Travelling wave solutions for a scalar age-structured equation

被引:0
|
作者
Ducrot, A.
机构
[1] Univ Bordeaux 2, CNRS, UMR 5466, F-33076 Bordeaux, France
[2] Univ Bordeaux 2, INRIA Futurs Anubis, F-33076 Bordeaux, France
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the study of travelling wave solutions for a simple epidemic model. This model consists in a single scalar equation with age-dependence and spatial structure. We prove the existence of travelling waves for a continuum of admissible wave speeds as well as some qualitative properties, like exponential decay and monotonicity with respect to the direction of front's propagation. Our proofs extensively use the comparison principle that allows us to construct suitable sub and super-solutions or to use the classical sliding method to obtain qualitative properties of the wave front.
引用
收藏
页码:251 / 273
页数:23
相关论文
共 50 条
  • [31] Monotone travelling fronts in an age-structured reaction-diffusion model of a single species
    Al-Omari, J
    Gourley, SA
    JOURNAL OF MATHEMATICAL BIOLOGY, 2002, 45 (04) : 294 - 312
  • [32] THE PERIODIC SOLUTIONS FOR TIME DEPENDENT AGE-STRUCTURED POPULATION MODELS
    周义仓
    马知恩
    ActaMathematicaScientia, 2000, (02) : 155 - 161
  • [33] NUMERICAL-SOLUTIONS OF THE AGE-STRUCTURED POPULATION-MODEL
    KOSTOVA, T
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1989, 69 (04): : T168 - T170
  • [34] EXISTENCE OF PERIODIC WAVE TRAINS FOR AN AGE-STRUCTURED MODEL WITH DIFFUSION
    Liu, Zhihua
    Wu, Yayun
    Zhang, Xiangming
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (12): : 6117 - 6130
  • [35] The periodic solutions for time dependent age-structured population models
    Zhou, YC
    Ma, Z
    ACTA MATHEMATICA SCIENTIA, 2000, 20 (02) : 155 - 161
  • [36] Convergence of Numerical Solutions to Stochastic Age-Structured Population System
    Wang, Huai-zhu
    Zheng, Yuan-shi
    Zhang, Qi-min
    PROCEEDINGS OF THE 2009 WRI GLOBAL CONGRESS ON INTELLIGENT SYSTEMS, VOL II, 2009, : 161 - 164
  • [37] Travelling wave solutions of the Burgers-Huxley equation
    Feng, Zhaosheng
    Tian, Jing
    Zheng, Shenzhou
    Lu, Hanfang
    IMA JOURNAL OF APPLIED MATHEMATICS, 2012, 77 (03) : 316 - 325
  • [38] New exact travelling wave solutions for the Ostrovsky equation
    Kangalgil, Figen
    Ayaz, Fatma
    PHYSICS LETTERS A, 2008, 372 (11) : 1831 - 1835
  • [39] Combinability of travelling wave solutions to nonlinear evolution equation
    Liu, SK
    Fu, ZT
    Liu, SD
    Wang, ZG
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2004, 59 (10): : 623 - 628
  • [40] New exact travelling wave solutions to Kundu equation
    Huang, DJ
    Li, DS
    Zhang, HQ
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2005, 44 (06) : 969 - 976