Dislocation drag in the low-temperature phase of C60 fullerite due to orientational relaxation of the molecules

被引:3
|
作者
Natsik, VD [1 ]
Podol'skii, AV [1 ]
机构
[1] Natl Acad Sci Ukraine, B Verkin Inst Low Temp Phys & Engn, UA-61164 Kharkov, Ukraine
关键词
D O I
10.1063/1.593888
中图分类号
O59 [应用物理学];
学科分类号
摘要
The interaction of edge dislocations with pentagonal (p) and hexagonal (h) orientation states of the molecules in the low-temperature simple cubic phase of C-60 fullerite is discussed. The temperature interval considered is T-g < T < T-c, where T-c = 260 K is the phase transition temperature and T-g = 90 K is the orientational glass point. The nonuniform distribution of the h configurations around a sessile dislocation line is described, and the starting force F-s(T) needed to break the dislocation away from the cloud of h configurations formed by it is determined. The dynamic drag force F-D(T,V) arising as a result of thermally activated transitions between the p and h configurations under the influence of the elastic field of a dislocation moving at a constant velocity V is calculated and analyzed. (C) 2000 American Institute of Physics. [S1063-777X(00)00703-9].
引用
收藏
页码:225 / 231
页数:7
相关论文
共 50 条
  • [21] Low-temperature heat capacity of fullerite C60 doped with nitrogen
    Gurevich, A. M.
    Terekhov, A. V.
    Kondrashev, D. S.
    Dolbin, A. V.
    Cassidy, D.
    Gadd, G. E.
    Moricca, S.
    Sundqvist, B.
    LOW TEMPERATURE PHYSICS, 2006, 32 (10) : 967 - 969
  • [22] Low-temperature microhardness of Xe-intercalated fullerite C60
    Fomenko, LS
    Lubenets, SV
    Natsik, VD
    Cassidy, D
    Gadd, GE
    Moricca, S
    Sundqvist, B
    LOW TEMPERATURE PHYSICS, 2005, 31 (05) : 454 - 458
  • [23] Low-temperature heat capacity of fullerite C60 doped with deuteromethane
    Bagatskii, M.I.
    Sumarokov, V.V.
    Dolbin, A.V.
    Sundqvist, B.
    Bagatskii, M.I. (bagatskii@ilt.kharkov.ua), 1600, Institute for Low Temperature Physics and Engineering (38): : 87 - 94
  • [24] Low-temperature orientational glass transition in molecular C60
    Schelkacheva, T. I.
    Tareyeva, E. E.
    Chtchelkatchev, N. M.
    PHYSICAL REVIEW B, 2007, 76 (19)
  • [25] Orientational phase transition in methane-intercalated fullerite C60
    Skokan, E., V
    Shulga, Yu M.
    Troyanov, S., I
    PHYSICAL REVIEW B, 2018, 98 (21)
  • [26] Relaxation contribution to shear moduli of the low-temperature phase of solid C60
    Kobelev, NP
    PHYSICS OF THE SOLID STATE, 2002, 44 (01) : 195 - 198
  • [27] Low-temperature thermal expansion of fullerite C60 alloyed with argon and neon
    Aleksandrovskii, AN
    Gavrilko, VG
    Esel'son, VB
    Manzhelii, VG
    Udovidchenko, BG
    Maletskiy, VP
    Sundqvist, B
    LOW TEMPERATURE PHYSICS, 2001, 27 (12) : 1033 - 1036
  • [28] Relaxation contribution to shear moduli of the low-temperature phase of solid C60
    N. P. Kobelev
    Physics of the Solid State, 2002, 44 : 195 - 198
  • [29] Numerical Study of the Passage of Natural Gas Components through C60 Fullerite in the Low-Temperature Phase
    Borodin, Vladislav, I
    Bubenchikov, Alexey M.
    Bubenchikov, Mikhail A.
    Ovchinnikov, Vyacheslav A.
    Chelnokova, Anna S.
    CRYSTALS, 2022, 12 (11)
  • [30] Low-temperature dynamics of matrix isolated methane molecules in fullerite C60: The heat capacity, isotope effects
    Bagatskii, M. I.
    Manzhelii, V. G.
    Sumarokov, V. V.
    Dolbin, A. V.
    Barabashko, M. S.
    Sundqvist, B.
    LOW TEMPERATURE PHYSICS, 2014, 40 (08) : 678 - 684