On the incomplete oblique projections method for solving box constrained least squares problems

被引:0
|
作者
Scolnik, H. [1 ]
Echebest, N. [2 ]
Guardarucci, M. T. [3 ]
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Comp, Buenos Aires, DF, Argentina
[2] Univ Nacl La Plata, Fac Ciencias Exactas, Dept Matemat, RA-1900 La Plata, Buenos Aires, Argentina
[3] Univ Nacl La Plata, Fac Ingn, Dept Ciencias Basicas, RA-1900 La Plata, Buenos Aires, Argentina
关键词
Inconsistent systems; Box constrained; Incomplete projections; ITERATIVE ALGORITHMS; SPLIT FEASIBILITY; APPROXIMATION;
D O I
10.1007/s11075-013-9721-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to extend the applicability of the incomplete oblique projections method (IOP) previously introduced by the authors for solving inconsistent linear systems to the box constrained case. The new algorithm employs incomplete projections onto the set of solutions of the augmented system Ax - r = b, together with the box constraints, based on a scheme similar to the one of IOP, adding the conditions for accepting an approximate solution in the box. The theoretical properties of the new algorithm are analyzed, and numerical experiences are presented comparing its performance with some well-known methods.
引用
收藏
页码:17 / 32
页数:16
相关论文
共 50 条
  • [21] A derivative free iterative method for solving least squares problems
    Hongmin Ren
    Ioannis K. Argyros
    Saïd Hilout
    Numerical Algorithms, 2011, 58 : 555 - 571
  • [22] A derivative free iterative method for solving least squares problems
    Ren, Hongmin
    Argyros, Ioannis K.
    Hilout, Said
    NUMERICAL ALGORITHMS, 2011, 58 (04) : 555 - 571
  • [23] A Stabilized GMRES Method for Solving Underdetermined Least Squares Problems
    Liao, Zeyu
    Hayami, Ken
    Morikuni, Keiichi
    Yin, Jun-Feng
    Liao, Zeyu (zeyu@nii.ac.jp), 1600, National Institute of Informatics (2020):
  • [24] THE LSQR METHOD FOR SOLVING TENSOR LEAST-SQUARES PROBLEMS
    Bentbib, Abdeslem H.
    Khouia, Asmaa
    Sadok, Hassane
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2022, 55 : 92 - 111
  • [25] A superfast method for solving Toeplitz linear least squares problems
    Van Barel, M
    Heinig, G
    Kravanja, P
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 366 : 441 - 457
  • [26] Implicit regularization of the incomplete oblique projections method
    Scolnik, H. D.
    Echebest, N. E.
    Guardarucci, M. T.
    INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2009, 16 (04) : 525 - 546
  • [27] ON BOX-CONSTRAINED TOTAL LEAST SQUARES PROBLEM
    Xu, Zhuoyi
    Xia, Yong
    Han, Deren
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2020, 10 (04): : 439 - 449
  • [28] Incomplete oblique projections for solving large inconsistent linear systems
    H. D. Scolnik
    N. Echebest
    M. T. Guardarucci
    M. C. Vacchino
    Mathematical Programming, 2008, 111 : 273 - 300
  • [29] Incomplete oblique projections for solving large inconsistent linear systems
    Scolnik, H. D.
    Echebest, N.
    Guardarucci, M. T.
    Vacchino, M. C.
    MATHEMATICAL PROGRAMMING, 2008, 111 (1-2) : 273 - 300
  • [30] The hyperbolic elimination method for solving the equality constrained indefinite least squares problem
    Liu, Qiaohua
    Pan, Baozhen
    Wang, Qian
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2010, 87 (13) : 2953 - 2966