On a topological N=4 Yang-Mills theory

被引:0
|
作者
Váña, O [1 ]
机构
[1] Charles Univ, Math Inst, Prague 18675 8, Czech Republic
来源
ACTA PHYSICA POLONICA B | 2002年 / 33卷 / 05期
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show, starting from simple differential geometric example, that the partition function of a twisted N = 4 Yang-Mills theory on certain manifold X is localized on instanton moduli space. Moreover, it equals to the Euler characteristic of this moduli space.
引用
收藏
页码:1277 / 1284
页数:8
相关论文
共 50 条
  • [31] Large N 2D Yang-Mills Theory and Topological String Theory
    Stefan Cordes
    Gregory Moore
    Sanjaye Ramgoolam
    Communications in Mathematical Physics, 1997, 185 : 543 - 619
  • [32] The coupling flow of N=4 super Yang-Mills theory
    Rupprecht, Maximilian
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, (04):
  • [33] Wilson loops in N=4 supersymmetric Yang-Mills theory
    Erickson, JK
    Semenoff, GW
    Zarembo, K
    NUCLEAR PHYSICS B, 2000, 582 (1-3) : 155 - 175
  • [34] ON THE ALGEBRAIC CHARACTERIZATION OF WITTENS TOPOLOGICAL YANG-MILLS THEORY
    OUVRY, S
    STORA, R
    VANBAAL, P
    PHYSICS LETTERS B, 1989, 220 (1-2) : 159 - 163
  • [35] SUPERCONFORMAL TRANSFORMATIONS OF THE N=4 SUPERSYMMETRIC YANG-MILLS THEORY
    MEHTA, MR
    PRAMANA, 1988, 30 (02) : 87 - 91
  • [36] Open fishchain in N = 4 Supersymmetric Yang-Mills Theory
    Nikolay Gromov
    Julius Julius
    Nicolò Primi
    Journal of High Energy Physics, 2021
  • [37] The topological susceptibility in the large-N limit of SU(N) Yang-Mills theory
    Ce, Marco
    Vera, Miguel Garcia
    Giustie, Leonardo
    Schaefer, Stefan
    PHYSICS LETTERS B, 2016, 762 : 232 - 236
  • [38] Wilson loop in N=4 super Yang-Mills theory
    Förste, S
    Ghoshal, D
    Theisen, S
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2000, 48 (1-3): : 111 - 114
  • [39] Antiferromagnetic operators in N=4 supersymmetric Yang-Mills theory
    Zarembo, K
    PHYSICS LETTERS B, 2006, 634 (5-6) : 552 - 556
  • [40] The d = [δ, b] decomposition of topological Yang-Mills theory
    Carvalho, M
    LETTERS IN MATHEMATICAL PHYSICS, 2001, 57 (03) : 253 - 268