Battery State of Charge Estimation Using Long Short-Term Memory Network and Extended Kalman Filter

被引:0
|
作者
Ni, Zichuan [1 ]
Yang, Ying [1 ]
Xiu, Xianchao [1 ]
机构
[1] Peking Univ, Coll Engn, Dept Mech & Engn Sci, State Key Lab Turbulence & Complex Syst, Beijing 100871, Peoples R China
关键词
Long short-term memory network; State of charge estimation; Extended Kalman filter; Lithium-ion batteries; OPEN-CIRCUIT-VOLTAGE; LITHIUM-ION BATTERIES;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a long short-term memory network structure is developed to estimate state of charge for lithium-ion batteries owing to its time series characteristic. It is further followed by the extended Kalman filter to alleviate the process noise. The proposed algorithm shows reduced root mean squared error as low as 0.48%, compared with traditional algorithms like linear regression, support vector regression and general shallow neural network. Our work provides a feasible way to estimate state of charge of batteries for general dynamic loading conditions.
引用
收藏
页码:5778 / 5783
页数:6
相关论文
共 50 条
  • [41] State-of-charge estimation for LiNi0.6Co0.2Mn0.2O2/graphite batteries using the compound method with improved extended Kalman filter and long short-term memory network
    Xu, Shuai
    Zhou, Jianxiong
    Zhou, Fei
    Liu, Yuchen
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (04) : 6115 - 6138
  • [42] State of charge estimation for a group of lithium-ion batteries using long short-term memory neural network
    Almaita, Eyad
    Alshkoor, Saleh
    Abdelsalam, Emad
    Almomani, Fares
    JOURNAL OF ENERGY STORAGE, 2022, 52
  • [43] State of charge estimation of lead acid battery using a kalman filter
    Loukil, Jihen
    Masmoudi, Ferdaous
    Derbel, Nabil
    2017 14TH INTERNATIONAL MULTI-CONFERENCE ON SYSTEMS, SIGNALS & DEVICES (SSD), 2017, : 308 - 312
  • [44] Reference evapotranspiration estimation using long short-term memory network and wavelet-coupled long short-term memory network
    Long, Xiaoxu
    Wang, Jiandong
    Gong, Shihong
    Li, Guangyong
    Ju, Hui
    IRRIGATION AND DRAINAGE, 2022, 71 (04) : 855 - 881
  • [45] State of Charge Estimation for Liquid Metal Battery Using Kalman Filter
    Wang, Xian
    Song, Zhengxiang
    Li, Tao
    Geng, Yingsan
    Wang, Jianhua
    Cao, Yupeng
    Liang, Haihong
    2017 3RD IEEE CONFERENCE ON ENERGY CONVERSION (CENCON), 2017, : 67 - 72
  • [46] Simulation Study on Battery State of Charge Estimation Using Kalman Filter
    Asghar, Furqan
    Talha, Muhammad
    Kim, Sung Ho
    Ra, In-Ho
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2016, 20 (06) : 861 - 866
  • [47] State of Charge (SOC) Estimation for Lithium-Ion Battery Cell Using Extended Kalman Filter
    Ucuncu, Murat
    Altindag, Arda
    2019 11TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING (ELECO 2019), 2019, : 503 - 509
  • [48] Estimation of State of Charge and Terminal Voltage of Li-ion Battery using Extended Kalman Filter
    Kumar, M. Satish
    Manasa, Thumpiri Reddy
    Raja, B.
    Selvajyothi, K.
    2020 6TH IEEE INTERNATIONAL ENERGY CONFERENCE (ENERGYCON), 2020, : 515 - 520
  • [49] State-of-charge estimation of lithium-ion battery using an improved neural network model and extended Kalman filter
    Chen, Cheng
    Xiong, Rui
    Yang, Ruixin
    Shen, Weixiang
    Sun, Fengchun
    JOURNAL OF CLEANER PRODUCTION, 2019, 234 : 1153 - 1164
  • [50] Volume of Imbalance Container Prediction using Kalman Filter and Long Short-Term Memory
    Kim, Geunjeong
    Block, Brit-Maren
    Mercorelli, Paolo
    ARTIFICIAL INTELLIGENCE: THEORY AND APPLICATIONS, VOL 1, AITA 2023, 2024, 843 : 53 - 63