Carbon Nanotube/Nanofibers and Graphite Hybrids for Li-Ion Battery Application

被引:7
|
作者
Nomura, Yosuke [1 ]
Anoshkin, Ilya V. [2 ]
Okuda, Chikaaki [3 ]
Iijima, Motoyuki [4 ]
Ukyo, Yoshio [3 ]
Kamiya, Hidehiro [1 ,5 ]
Nasibulin, Albert G. [2 ]
Kauppinen, Esko I. [2 ]
机构
[1] Tokyo Univ Agr & Technol, Inst Engn, Koganei, Tokyo 1848588, Japan
[2] Aalto Univ, Dept Appl Phys, Sch Sci, Espoo 00076, Finland
[3] Toyota Cent Res & Dev Labs Inc, Yokomichi, Aichi 4801192, Japan
[4] Yokohama Natl Univ, Grad Sch Environm & Informat Sci, Hodogaya Ku, Yokohama, Kanagawa 2408501, Japan
[5] Tokyo Univ Agr & Technol, Grad Sch Bioapplicat & Syst Engn, Koganei, Tokyo 1848588, Japan
基金
日本科学技术振兴机构;
关键词
LITHIUM; COMPOSITES; DISPERSION; NANOTUBES; GRAPHENE; SURFACE;
D O I
10.1155/2014/586241
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
To improve the electrical conductivity of negative electrodes of lithium ion batteries, we applied a direct CVD synthesis of carbon nanomaterials on the surface of graphite particles. To prepare a catalyst, two alternative approaches were utilized: colloidal nanoparticles (NPs) and metal (Ni and Co) nitrate salt precursors deposited on the graphite surface. Both colloidal and precursor systems allowed us to produce carbon nanofibers (CNFs) on the graphite surface with high coverage under the optimum CVD conditions. Electrical measurements revealed that the resistivity of the actual electrodes fabricated from CNFs coated graphite particles was about 40% lower compared to the original pristine graphite electrodes.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Influence of NaBF4 on the Graphite Anode for Li-Ion Battery
    Wang Li-Zhen
    Zhang Wen-Jing
    Liu Yu-Jun
    Gu Shu-Hua
    Sun Xin-Ke
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2013, 29 (07) : 1407 - 1413
  • [32] Enhanced performance of natural graphite in Li-ion battery by oxalatoborate coating
    Zhang, SS
    Xu, K
    Jow, TR
    JOURNAL OF POWER SOURCES, 2004, 129 (02) : 275 - 279
  • [33] Studies on capacity fading mechanism of graphite anode for Li-ion battery
    Fu, L. J.
    Endo, K.
    Sekine, K.
    Takamura, T.
    Wu, Y. P.
    Wu, H. Q.
    JOURNAL OF POWER SOURCES, 2006, 162 (01) : 663 - 666
  • [34] Synchronized Operando Analysis of Graphite Negative Electrode of Li-Ion Battery
    Fujimoto, Hiroyuki
    Murakami, Miwa
    Yamanaka, Toshiro
    Shimoda, Keiji
    Kiuchi, Hisao
    Ogumi, Zempachi
    Abe, Takeshi
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (08)
  • [35] Recovery of intercalated Li and synthesis of reduced graphene oxide from graphite of spent Li-ion battery for supercapacitor application
    Uppin, Bhagyashree
    Sankannavar, Rohini
    Kangutkar, Raju S.
    Manjanna, Jayappa
    Kolekar, Sanjay
    Nayaka, Girish P.
    INORGANIC CHEMISTRY COMMUNICATIONS, 2025, 177
  • [36] A Versatile Carbon Nanotube-Based Scalable Approach for Improving Interfaces in Li-Ion Battery Electrodes
    Ventrapragada, Lakshman K.
    Zhu, Jingyi
    Creager, Stephen E.
    Rao, Apparao M.
    Podila, Ramakrishna
    ACS OMEGA, 2018, 3 (04): : 4502 - 4508
  • [37] Constructing flexible carbon-graphite network for enhancing durability of silicon anodes in Li-ion battery
    Han, Wenkai
    Wu, Siyong
    Xu, Xing
    Wei, Li
    Zhang, Xiao
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2024, 953
  • [38] Pyrolytic carbon-coated silicon/carbon nanotube composites: Promising application for Li-ion batteries
    Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, China
    Int. J. Nanomanufacturing, 2008, 1-2 (4-15):
  • [39] Enhancement of Li-ion battery performance of graphite anode by sodium ion as an electrolyte additive
    Komaba, S
    Itabashi, T
    Kaplan, B
    Groult, H
    Kumagai, N
    ELECTROCHEMISTRY COMMUNICATIONS, 2003, 5 (11) : 962 - 966
  • [40] A perspective on the Li-ion battery
    John B. Goodenough
    Hongcai Gao
    Science China Chemistry, 2019, 62 : 1555 - 1556