Selection of thermotolerant Saccharomyces cerevisiae for high temperature ethanol production from molasses and increasing ethanol production by strain improvement

被引:31
|
作者
Pattanakittivorakul, Sornsiri [1 ]
Lertwattanasakul, Noppon [1 ]
Yamada, Mamoru [2 ]
Limtong, Savitree [1 ,3 ]
机构
[1] Kasetsart Univ, Fac Sci, Dept Microbiol, Bangkok 10900, Thailand
[2] Yamaguchi Univ, Grad Sch Med, Appl Mol Biosci, Ube, Yamaguchi 7558505, Japan
[3] Royal Soc Thailand, Acad Sci, Bangkok 10300, Thailand
关键词
Ethanol fermentation; Thermotolerant yeast; Molasses; Mutagenesis; Ethyl methane sulfonate; BIOETHANOL PRODUCTION; PICHIA-STIPITIS; YEAST; FERMENTATION; TOLERANCE; JUICE; OPTIMIZATION; MUTAGENESIS; INHIBITORS; RADIATION;
D O I
10.1007/s10482-019-01230-6
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
A thermotolerant ethanol fermenting yeast strain is a key requirement for effective ethanol production at high temperature. This work aimed to select a thermotolerant yeast producing a high ethanol concentration from molasses and increasing its ethanol production by mutagenesis. Saccharomyces cerevisiae DMKU 3-S087 was selected from 168 ethanol producing strains because it produced the highest ethanol concentration from molasses at 40 degrees C. Optimization of molasses broth composition was performed by the response surface method using Box-Behnken design. In molasses broth containing optimal total fermentable sugars (TFS) of 200g/L and optimal (NH4)(2)SO4 of 1g/L, with an initial pH of 5.5 by shaking flask cultivation at 40 degrees C ethanol, productivity and yield were 58.4 +/- 0.24g/L, 1.39g/L/h and 0.29g/g, respectively. Batch fermentation in a 5L stirred-tank fermenter with 3L optimized molasses broth adjusted to an initial pH of 5.5 and fermentation controlled at 40 degrees C and 300rpm agitation resulted in 72.4g/L ethanol, 1.21g/L/h productivity and 0.36g/g yield at 60h. Strain DMKU 3-S087 improvement was performed by mutagenesis using ultraviolet radiation and ethyl methane sulfonate (EMS). Six EMS mutants produced higher ethanol (65.2 +/- 0.48-73.0 +/- 0.54g/L) in molasses broth containing 200g/L TFS and 1g/L (NH4)(2)SO4 by shake flask fermentation at 37 degrees C than the wild type (59.8 +/- 0.25g/L). Among these mutants, only mutant S087E100-265 produced higher ethanol (62.5 +/- 0.26g/L) than the wild type (59.5 +/- 0.02g/L) at 40 degrees C. In addition, mutant S087E100-265 showed better tolerance to high sugar concentration, furfural, hydroxymethylfurfural and acetic acid than the wild type.
引用
收藏
页码:975 / 990
页数:16
相关论文
共 50 条
  • [31] Kinetics and Thermodynamics of Ethanol Production by Saccharomyces cerevisiae MLD10 Using Molasses
    Arshad, Muhammad
    Ahmed, Sibtain
    Zia, Muhammad Anjum
    Rajoka, Muhammad Ibrahim
    APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2014, 172 (05) : 2455 - 2464
  • [32] Cane molasses fermentation for continuous ethanol production in an immobilized cells reactor by Saccharomyces cerevisiae
    Ghorbani, Farshid
    Younesi, Habibollah
    Sari, Abbas Esmaeili
    Najafpour, Ghasem
    RENEWABLE ENERGY, 2011, 36 (02) : 503 - 509
  • [33] Metabolic engineering strategies for improvement of ethanol production in cellulolytic Saccharomyces cerevisiae
    Song, Xiaofei
    Li, Yuanzi
    Wu, Yuzhen
    Cai, Miao
    Liu, Quanli
    Gao, Kai
    Zhang, Xiuming
    Bai, Yanling
    Xu, Haijin
    Qiao, Mingqiang
    FEMS YEAST RESEARCH, 2018, 18 (08)
  • [34] Enhanced xylose fermentation and ethanol production by engineered Saccharomyces cerevisiae strain
    Leonardo de Figueiredo Vilela
    Verônica Parente Gomes de Araujo
    Raquel de Sousa Paredes
    Elba Pinto da Silva Bon
    Fernando Araripe Gonçalves Torres
    Bianca Cruz Neves
    Elis Cristina Araújo Eleutherio
    AMB Express, 5
  • [35] Omics Sequencing of Saccharomyces cerevisiae Strain with Improved Capacity for Ethanol Production
    Lu, Zhilong
    Guo, Ling
    Chen, Xiaoling
    Lu, Qi
    Wu, Yanling
    Chen, Dong
    Wu, Renzhi
    Chen, Ying
    FERMENTATION-BASEL, 2023, 9 (05):
  • [36] Enhanced xylose fermentation and ethanol production by engineered Saccharomyces cerevisiae strain
    Vilela, Leonardo de Figueiredo
    Gomes de Araujo, Veronica Parente
    Paredes, Raquel de Sousa
    da Silva Bon, Elba Pinto
    Goncalves Torres, Fernando Araripe
    Neves, Bianca Cruz
    Araujo Eleutherio, Elis Cristina
    AMB EXPRESS, 2015, 5
  • [37] Highly efficient bioethanol production by a Saccharomyces cerevisiae strain with multiple stress tolerance to high temperature, acid and ethanol
    Benjaphokee, Suthee
    Hasegawa, Daisuke
    Yokota, Daiki
    Asvarak, Thipa
    Auesukaree, Choowong
    Sugiyama, Minetaka
    Kaneko, Yoshinobu
    Boonchird, Chuenchit
    Harashima, Satoshi
    NEW BIOTECHNOLOGY, 2012, 29 (03) : 379 - 386
  • [38] Optimization of ethanol production from starch by an amylolytic nuclear petite Saccharomyces cerevisiae strain
    Oner, Ebru Toksoy
    YEAST, 2006, 23 (12) : 849 - 856
  • [39] GENETIC-IMPROVEMENT OF SACCHAROMYCES-CEREVISIAE FOR ETHANOL-PRODUCTION FROM XYLOSE
    TANTIRUNGKIJ, M
    SEKI, T
    YOSHIDA, T
    RECOMBINANT DNA TECHNOLOGY II, 1994, 721 : 138 - 147
  • [40] Engineering a natural Saccharomyces cerevisiae strain for ethanol production from inulin by consolidated bioprocessing
    Da Wang
    Fu-Li Li
    Shi-An Wang
    Biotechnology for Biofuels, 9