Area estimation of soybean leaves of different shapes with artificial neural networks

被引:1
|
作者
de Sa, Ludimila Geiciane [1 ]
Brant Albuquerque, Carlos Juliano [1 ]
Valadares, Nermy Ribeiro [1 ]
Brito, Orlando Gonsalves [2 ]
Mota, Amara Nunes [1 ]
Goncalves Fernandes, Ana Clara [1 ]
de Azevedo, Alcinei Mistico [1 ]
机构
[1] Univ Fed Minas Gerais, Inst Ciencias Agr, Av Univ 1000, BR-39404547 Montes Claros, MG, Brazil
[2] Univ Fed Lavras, Lavras, MG, Brazil
来源
ACTA SCIENTIARUM-AGRONOMY | 2022年 / 44卷
关键词
Glycine max; multilayer perceptrons; computational intelligence; LEAF-AREA; MODELS; PREDICTION; WEIGHT;
D O I
10.4025/actasciagron.v44i1.54787
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Leaf area is one of the most commonly used physiological parameters in plant growth analysis because it facilitates the interpretation of factors associated with yield. The different leaf formats related to soybean genotypes can influence the quality of the model fit for the estimation of leaf area. Direct leaf area measurement is difficult and inaccurate, requires expensive equipment, and is labor intensive. This study developed methodologies to estimate soybean leaf area using neural networks and considering different leaf shapes. A field experiment was carried out from February to July 2017. Data were collected from thirty-six cultivars separated into three groups according to the leaf shape. Multilayer perceptrons were developed using 300 leaves per group, of which 70% were used for training and 30% for validation. The most important morphological measures were also tested with Garson's method. The artificial neural networks were efficient in estimating the soybean leaf area, with coefficients of determination close to 0.90. The left leaflet width and right leaflet length are sufficient to estimate the leaf area. Network 4, trained with leaves from all groups, was the most general and suitable for the prediction of soybean leaf area.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Hurst Parameter Estimation Using Artificial Neural Networks
    Ledesma-Orozco, S.
    Ruiz-Pinales, J.
    Garcia-Hernandez, G.
    Cerda-Villafana, G.
    Hernandez-Fusilier, D.
    JOURNAL OF APPLIED RESEARCH AND TECHNOLOGY, 2011, 9 (02) : 227 - 241
  • [22] Artificial neural networks for the cost estimation of stamping dies
    Burcu Özcan
    Alpaslan Fığlalı
    Neural Computing and Applications, 2014, 25 : 717 - 726
  • [23] Probability density estimation using artificial neural networks
    Likas, A
    COMPUTER PHYSICS COMMUNICATIONS, 2001, 135 (02) : 167 - 175
  • [24] DIRECTION OF ARRIVAL ESTIMATION USING ARTIFICIAL NEURAL NETWORKS
    JHA, S
    DURRANI, T
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1991, 21 (05): : 1192 - 1201
  • [25] The Application of Artificial Neural Networks in Indirect Cost Estimation
    Lesniak, Agnieszka
    11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 1312 - 1315
  • [26] Estimation of postmortem period by means of artificial neural networks
    Chibat, Ahmed
    Zerdazi, Dalel
    Rahmani, Fouad Lazhar
    ELECTRONIC JOURNAL OF APPLIED STATISTICAL ANALYSIS, 2016, 9 (02) : 326 - 339
  • [27] Estimation of daily evaporation using artificial neural networks
    Doǧan, Emrah
    Işik, Sabahattin
    Sandalci, Mehmet
    Teknik Dergi/Technical Journal of Turkish Chamber of Civil Engineers, 2007, 18 (02): : 4119 - 4131
  • [28] Convergence rate of Artificial Neural Networks for estimation in software
    Rankovic, Dragica
    Rankovic, Nevena
    Ivanovic, Mirjana
    Lazic, Ljubomir
    INFORMATION AND SOFTWARE TECHNOLOGY, 2021, 138
  • [29] Data fusion and artificial neural networks for biomass estimation
    Leal, RR
    Butler, P
    Lane, P
    Payne, PA
    IEE PROCEEDINGS-SCIENCE MEASUREMENT AND TECHNOLOGY, 1997, 144 (02) : 69 - 72
  • [30] Estimation of brain connectivity through Artificial Neural Networks
    Antonacci, Yuri
    Toppi, Jlenia
    Mattia, Donatella
    Pietrabissa, Antonio
    Astolfi, Laura
    2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2019, : 636 - 639