Decay rates for a beam with pointwise force and moment feedback

被引:43
|
作者
Ammari, K [1 ]
Liu, ZY
Tucsnak, M
机构
[1] Univ Nancy 1, Dept Math, Inst Elie Cartan, F-54506 Vandoeuvre Les Nancy, France
[2] Univ Minnesota, Dept Math & Stat, Duluth, MN 55812 USA
关键词
pointwise control; exponential decay; polynomial decay; observability inequality;
D O I
10.1007/s004980200009
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the Rayleigh beam equation and the Euler-Bernoulli beam equation with pointwise feedback shear force and bending moment at the position xi in a bounded domain (0, pi) with certain boundary conditions. The energy decay rate in both cases is investigated. In the case of the Rayleigh beam, we show that the decay rate is exponential if and only if xi/pi is a rational number with coprime factorization xi/pi = p/q, where q is odd. Moreover, for any other location of the actuator we give explicit polynomial decay estimates valid for regular initial data. In the case of the Euler-Bernoulli beam, even for a nonhomogeneous material, exponential decay of the energy is proved, independently of the position of the actuator.
引用
收藏
页码:229 / 255
页数:27
相关论文
共 50 条
  • [1] Decay Rates for a Beam with Pointwise Force and Moment Feedback
    Kais Ammari
    Zhuangyi Liu
    Marius Tucsnak
    Mathematics of Control, Signals and Systems, 2002, 15 : 229 - 255
  • [2] Global and Pointwise Rates of Decay in Glaucoma Eyes Deteriorating according to Pointwise Event Analysis
    Nassiri, Nariman
    Moghimi, Sasan
    Coleman, Anne L.
    Law, Simon K.
    Caprioli, Joseph
    Nouri-Mahdavi, Kouros
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2013, 54 (02) : 1208 - 1213
  • [3] Stabilization of a translating tensioned beam through a pointwise control force
    Zhu, WD
    Guo, BZ
    Mote, CD
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2000, 122 (02): : 322 - 331
  • [4] Stabilization of a translating tensioned beam through a pointwise control force
    Zhu, WD
    Guo, BZ
    Mote, CD
    INTEGRATING DYNAMICS, CONDITION MONITORING AND CONTROL FOR THE 21ST CENTURY - DYMAC 99, 1999, : 77 - 84
  • [5] Stabilization of Bernoulli-Euler beams by means of a pointwise feedback force
    Ammari, K
    Tucsnak, M
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 39 (04) : 1160 - 1181
  • [6] Moment decay rates of solutions of stochastic differential equations
    Liu, K
    Chen, AY
    TOHOKU MATHEMATICAL JOURNAL, 2001, 53 (01) : 81 - 93
  • [7] On pointwise decay of waves
    Schlag, W.
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (06)
  • [8] Force (Moment)-Feedback System for Mechatronic Elements.
    Petrik, O.
    Periodica Polytechnica Mechanical Engineering, 1987, 31 (2-3): : 175 - 179
  • [9] DECAY-RATES FOR THE PLANE CURVED BEAM
    STEPHEN, NG
    WANG, PJ
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1993, 73 (09): : 230 - 232
  • [10] General Decay Rates for a Laminated Beam with Memory
    Chen, Zhijing
    Liu, Wenjun
    Chen, Dongqin
    TAIWANESE JOURNAL OF MATHEMATICS, 2019, 23 (05): : 1227 - 1252