Evaluation of candidate models for the 13th generation International Geomagnetic Reference Field

被引:28
|
作者
Alken, P. [1 ,2 ]
Thebault, E. [3 ]
Beggan, C. D. [4 ]
Aubert, J. [6 ]
Baerenzung, J. [13 ]
Brown, W. J. [4 ]
Califf, S. [1 ,2 ]
Chulliat, A. [1 ,2 ]
Cox, G. A. [4 ]
Finlay, C. C. [5 ]
Fournier, A. [6 ]
Gillet, N. [7 ]
Hammer, M. D. [5 ]
Holschneider, M. [13 ]
Hulot, G. [6 ]
Korte, M. [10 ]
Lesur, V. [6 ]
Livermore, P. W. [8 ]
Lowes, F. J. [9 ]
Macmillan, S. [4 ]
Nair, M. [1 ,2 ]
Olsen, N. [5 ]
Ropp, G. [6 ]
Rother, M. [10 ]
Schnepf, N. R. [1 ,2 ]
Stolle, C. [10 ]
Toh, H. [11 ]
Vervelidou, F. [10 ]
Vigneron, P. [6 ]
Wardinski, I. [12 ]
机构
[1] Univ Colorado Boulder, Cooperat Inst Res Environm Sci, 325 Broadway,E-NE42, Boulder, CO 80305 USA
[2] NOAA, Natl Ctr Environm Informat, Boulder, CO USA
[3] Univ Angers, CNRS, Lab Planetol & Geodynam, UMR 6112,Univ Nantes, Nantes, France
[4] British Geol Survey, Lyell Ctr, Res Ave South, Edinburgh EH14 4AP, Midlothian, Scotland
[5] Tech Univ Denmark, Div Geomagnetism, DTU Space, Centrifugevej 356, DK-2800 Lyngby, Denmark
[6] Univ Paris, Inst Phys Globe Paris, CNRS, F-75005 Paris, France
[7] Univ Savoie Mt Blanc, Univ Grenoble Alpes, CNRS, IRD,IFSTTAR,ISTerre, F-38000 Grenoble, France
[8] Univ Leeds, Sch Earth & Environm, Leeds LS2 9JT, W Yorkshire, England
[9] Newcastle Univ, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
[10] GFZ German Res Ctr Geosci, D-14473 Potsdam, Germany
[11] Kyoto Univ, Grad Sch Sci, Div Earth & Planetary Sci, Sakyo Ku, Kitashirakawa Oiwake Cho, Kyoto 6068502, Japan
[12] Univ Strasbourg EOST, CNRS, Inst Phys Globe Strasbourg, UMR 7516, Strasbourg, France
[13] Univ Potsdam, Neuen Palais 10, Potsdam, Germany
来源
EARTH PLANETS AND SPACE | 2021年 / 73卷 / 01期
关键词
IGRF; Magnetic field modeling; Geomagnetism;
D O I
10.1186/s40623-020-01281-4
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
In December 2019, the 13th revision of the International Geomagnetic Reference Field (IGRF) was released by the International Association of Geomagnetism and Aeronomy (IAGA) Division V Working Group V-MOD. This revision comprises two new spherical harmonic main field models for epochs 2015.0 (DGRF-2015) and 2020.0 (IGRF-2020) and a model of the predicted secular variation for the interval 2020.0 to 2025.0 (SV-2020-2025). The models were produced from candidates submitted by fifteen international teams. These teams were led by the British Geological Survey (UK), China Earthquake Administration (China), Universidad Complutense de Madrid (Spain), University of Colorado Boulder (USA), Technical University of Denmark (Denmark), GFZ German Research Centre for Geosciences (Germany), Institut de physique du globe de Paris (France), Institut des Sciences de la Terre (France), Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation (Russia), Kyoto University (Japan), University of Leeds (UK), Max Planck Institute for Solar System Research (Germany), NASA Goddard Space Flight Center (USA), University of Potsdam (Germany), and Universite de Strasbourg (France). The candidate models were evaluated individually and compared to all other candidates as well to the mean, median and a robust Huber-weighted model of all candidates. These analyses were used to identify, for example, the variation between the Gauss coefficients or the geographical regions where the candidate models strongly differed. The majority of candidates were sufficiently close that the differences can be explained primarily by individual modeling methodologies and data selection strategies. None of the candidates were so different as to warrant their exclusion from the final IGRF-13. The IAGA V-MOD task force thus voted for two approaches: the median of the Gauss coefficients of the candidates for the DGRF-2015 and IGRF-2020 models and the robust Huber-weighted model for the predictive SV-2020-2025. In this paper, we document the evaluation of the candidate models and provide details of the approach used to derive the final IGRF-13 products. We also perform a retrospective analysis of the IGRF-12 SV candidates over their performance period (2015-2020). Our findings suggest that forecasting secular variation can benefit from combining physics-based core modeling with satellite observations.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] NOAA/NGDC candidate models for the 11th generation International Geomagnetic Reference Field and the concurrent release of the 6th generation Pomme magnetic model
    Maus, S.
    Manoj, C.
    Rauberg, J.
    Michaelis, I.
    Luehr, H.
    EARTH PLANETS AND SPACE, 2010, 62 (10): : 729 - 735
  • [22] EVALUATION OF INTERNATIONAL GEOMAGNETIC REFERENCE FIELD
    BARKER, FS
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1972, 53 (04): : 352 - +
  • [23] International Geomagnetic Reference Field: the eleventh generation
    Finlay, C. C.
    Maus, S.
    Beggan, C. D.
    Bondar, T. N.
    Chambodut, A.
    Chernova, T. A.
    Chulliat, A.
    Golovkov, V. P.
    Hamilton, B.
    Hamoudi, M.
    Holme, R.
    Hulot, G.
    Kuang, W.
    Langlais, B.
    Lesur, V.
    Lowes, F. J.
    Luehr, H.
    Macmillan, S.
    Mandea, M.
    McLean, S.
    Manoj, C.
    Menvielle, M.
    Michaelis, I.
    Olsen, N.
    Rauberg, J.
    Rother, M.
    Sabaka, T. J.
    Tangborn, A.
    Toffner-Clausen, L.
    Thebault, E.
    Thomson, A. W. P.
    Wardinski, I.
    Wei, Z.
    Zvereva, T. I.
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2010, 183 (03) : 1216 - 1230
  • [24] International Geomagnetic Reference Field - the eighth generation
    Mandea, M
    Macmillan, S
    EARTH PLANETS AND SPACE, 2000, 52 (12): : 1119 - 1124
  • [25] International Geomagnetic Reference Field—the eighth generation
    Mioara Mandea
    Susan Macmillan
    Earth, Planets and Space, 2000, 52 : 1119 - 1124
  • [26] International Geomagnetic Reference Field—the tenth generation
    Susan Macmillan
    Stefan Maus
    Earth, Planets and Space, 2005, 57 : 1135 - 1140
  • [27] International geomagnetic reference field: The seventh generation
    Barton, CE
    JOURNAL OF GEOMAGNETISM AND GEOELECTRICITY, 1997, 49 (2-3): : 123 - 148
  • [28] International Geomagnetic Reference Field: the thirteenth generation
    P. Alken
    E. Thébault
    C. D. Beggan
    H. Amit
    J. Aubert
    J. Baerenzung
    T. N. Bondar
    W. J. Brown
    S. Califf
    A. Chambodut
    A. Chulliat
    G. A. Cox
    C. C. Finlay
    A. Fournier
    N. Gillet
    A. Grayver
    M. D. Hammer
    M. Holschneider
    L. Huder
    G. Hulot
    T. Jager
    C. Kloss
    M. Korte
    W. Kuang
    A. Kuvshinov
    B. Langlais
    J.-M. Léger
    V. Lesur
    P. W. Livermore
    F. J. Lowes
    S. Macmillan
    W. Magnes
    M. Mandea
    S. Marsal
    J. Matzka
    M. C. Metman
    T. Minami
    A. Morschhauser
    J. E. Mound
    M. Nair
    S. Nakano
    N. Olsen
    F. J. Pavón-Carrasco
    V. G. Petrov
    G. Ropp
    M. Rother
    T. J. Sabaka
    S. Sanchez
    D. Saturnino
    N. R. Schnepf
    Earth, Planets and Space, 73
  • [29] International geomagnetic reference field - the tenth generation
    Macmillan, S
    Maus, S
    EARTH PLANETS AND SPACE, 2005, 57 (12): : 1135 - 1140
  • [30] International Geomagnetic Reference Field: the thirteenth generation
    Alken, P.
    Thebault, E.
    Beggan, C. D.
    Amit, H.
    Aubert, J.
    Baerenzung, J.
    Bondar, T. N.
    Brown, W. J.
    Califf, S.
    Chambodut, A.
    Chulliat, A.
    Cox, G. A.
    Finlay, C. C.
    Fournier, A.
    Gillet, N.
    Grayver, A.
    Hammer, M. D.
    Holschneider, M.
    Huder, L.
    Hulot, G.
    Jager, T.
    Kloss, C.
    Korte, M.
    Kuang, W.
    Kuvshinov, A.
    Langlais, B.
    Leger, J. -M.
    Lesur, V.
    Livermore, P. W.
    Lowes, F. J.
    Macmillan, S.
    Magnes, W.
    Mandea, M.
    Marsal, S.
    Matzka, J.
    Metman, M. C.
    Minami, T.
    Morschhauser, A.
    Mound, J. E.
    Nair, M.
    Nakano, S.
    Olsen, N.
    Pavon-Carrasco, F. J.
    Petrov, V. G.
    Ropp, G.
    Rother, M.
    Sabaka, T. J.
    Sanchez, S.
    Saturnino, D.
    Schnepf, N. R.
    EARTH PLANETS AND SPACE, 2021, 73 (01):