EFFECTIVE l2 DECOUPLING FOR THE PARABOLA

被引:7
|
作者
Li, Zane Kun [1 ]
机构
[1] Indiana Univ, Dept Math, 831 East 3rd St, Bloomington, IN 47405 USA
关键词
VINOGRADOVS; BOUNDS; PROOF;
D O I
10.1112/mtk.12038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We make effective l2Lp decoupling for the parabola in the range 4<p<6. In an appendix joint with Jean Bourgain, we apply the main theorem to prove the conjectural bound for the sixth-order correlation of the integer solutions of the equation x2+y2=m in an extremal case. This proves unconditionally a result that was proven in Bombieri and Bourgain [Int. Math. Res. Not. IMRN2015(11), 3343-3407] under the hypotheses of the Birch and Swinnerton-Dyer conjecture and the Riemann Hypothesis for L-functions of elliptic curves over Q.
引用
收藏
页码:681 / 712
页数:32
相关论文
共 50 条
  • [1] An l2 decoupling interpretation of efficient congruencing: the parabola
    Li, Zane Kun
    REVISTA MATEMATICA IBEROAMERICANA, 2021, 37 (05) : 1761 - 1802
  • [2] The proof of the l2 decoupling conjecture
    Rozenblum, G. V.
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 58 (02) : 273 - 274
  • [3] The proof of the l2 Decoupling Conjecture
    Bourgain, Jean
    Demeter, Ciprian
    ANNALS OF MATHEMATICS, 2015, 182 (01) : 351 - 389
  • [4] Mixed Norm l2 Decoupling for Paraboloids
    Dasu, Shival
    Jung, Hongki
    Li, Zane Kun
    Madrid, Jose
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (20) : 17972 - 18000
  • [5] A Study Guide for the l2 Decoupling Theorem
    Bourgain, Jean
    Demeter, Ciprian
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2017, 38 (01) : 173 - 200
  • [6] A study guide for the l2 decoupling theorem
    Jean Bourgain
    Ciprian Demeter
    Chinese Annals of Mathematics, Series B, 2017, 38 : 173 - 200
  • [7] Improved decoupling for the parabola
    Guth, Larry
    Maldague, Dominique
    Wang, Hong
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2024, 26 (03) : 875 - 917
  • [8] Lattice points on a curve via l2 decoupling
    Kiyohara, Daishi
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2024, 20 (08) : 2045 - 2057
  • [9] A SHORT PROOF OF l2 DECOUPLING FOR THE MOMENT CURVE
    Guo, Shaoming
    Li, Zane Kun
    Yung, Po-Lam
    Zorin-Kranich, Pavel
    AMERICAN JOURNAL OF MATHEMATICS, 2021, 143 (06) : 1983 - 1998
  • [10] l2 DECOUPLING IN R2 FOR CURVES WITH VANISHING CURVATURE
    Biswas, Chandan
    Gilula, Maxim
    Li, Linhan
    Schwend, Jeremy
    Xi, Yakun
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (05) : 1987 - 1997