An l2 decoupling interpretation of efficient congruencing: the parabola

被引:9
|
作者
Li, Zane Kun [1 ]
机构
[1] Indiana Univ, Dept Math, 831 East 3rd St, Bloomington, IN 47405 USA
关键词
l(2) decoupling; efficient congruencing; MAIN CONJECTURE; BOUNDS; PROOF; SUMS;
D O I
10.4171/RMI/1248
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a new proof of l(2) decoupling for the parabola inspired from efficient congruencing. Making quantitative this proof matches a bound obtained by Bourgain for the discrete restriction problem for the parabola. We illustrate similarities and differences between this new proof and efficient congruencing and the proof of decoupling by Bourgain and Demeter. We also show where tools from decoupling such as l(2) L-2 decoupling, Bernstein's inequality, and ball inflation come into play.
引用
收藏
页码:1761 / 1802
页数:42
相关论文
共 50 条
  • [1] EFFECTIVE l2 DECOUPLING FOR THE PARABOLA
    Li, Zane Kun
    MATHEMATIKA, 2020, 66 (03) : 681 - 712
  • [2] The proof of the l2 decoupling conjecture
    Rozenblum, G. V.
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 58 (02) : 273 - 274
  • [3] The proof of the l2 Decoupling Conjecture
    Bourgain, Jean
    Demeter, Ciprian
    ANNALS OF MATHEMATICS, 2015, 182 (01) : 351 - 389
  • [4] Mixed Norm l2 Decoupling for Paraboloids
    Dasu, Shival
    Jung, Hongki
    Li, Zane Kun
    Madrid, Jose
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (20) : 17972 - 18000
  • [5] A Study Guide for the l2 Decoupling Theorem
    Bourgain, Jean
    Demeter, Ciprian
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2017, 38 (01) : 173 - 200
  • [6] A study guide for the l2 decoupling theorem
    Jean Bourgain
    Ciprian Demeter
    Chinese Annals of Mathematics, Series B, 2017, 38 : 173 - 200
  • [7] Decoupling Direction and Norm for Efficient Gradient-Based L2 Adversarial Attacks and Defenses
    Rony, Jerome
    Hafemann, Luiz G.
    Oliveira, Luiz S.
    Ben Ayed, Ismail
    Sabourin, Robert
    Granger, Eric
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 4317 - 4325
  • [8] Lattice points on a curve via l2 decoupling
    Kiyohara, Daishi
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2024, 20 (08) : 2045 - 2057
  • [9] A SHORT PROOF OF l2 DECOUPLING FOR THE MOMENT CURVE
    Guo, Shaoming
    Li, Zane Kun
    Yung, Po-Lam
    Zorin-Kranich, Pavel
    AMERICAN JOURNAL OF MATHEMATICS, 2021, 143 (06) : 1983 - 1998
  • [10] l2 DECOUPLING IN R2 FOR CURVES WITH VANISHING CURVATURE
    Biswas, Chandan
    Gilula, Maxim
    Li, Linhan
    Schwend, Jeremy
    Xi, Yakun
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (05) : 1987 - 1997