Discrimination of the Structures in Nuclear Facility by Deep Learning Based on 3D Point Cloud Data

被引:2
|
作者
Imabuchi, Takashi [1 ]
Tanifuji, Yuta [1 ]
Kawabata, Kuniaki [1 ]
机构
[1] Japan Atom Energy Agcy JAEA, Collaborat Labs Adv Decommissioning Sci CLADS, Sect Fukushima Res & Dev, Fukushima, Japan
关键词
D O I
10.1109/SII52469.2022.9708845
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper describes a method for discriminating structures in a nuclear facility based on deep learning using three-dimensional (3D) point cloud data. To promote safe and secure decommissioning, estimating and assuming the conditions of a nuclear facility based on measured sensor data are important. Especially, data on dose rate in a workspace are useful to plan a decommissioning task, and the shape and material of structures in the workspace are required for radiation dose simulation. Shape data can be obtained using equipment such as a 3D laser scanner. However, obtaining the material data of objects is difficult. Therefore, we consider that major material can be estimated from the category of structures in a nuclear facility. In this study, we propose a structure discrimination method based on 3D semantic segmentation using 3D point cloud data comprising labeled data points by referring to the structural category labels of 3D computer-aided design data of an existing nuclear facility. We evaluated the discrimination performance of the proposed method through hold-out validation.
引用
收藏
页码:1036 / 1040
页数:5
相关论文
共 50 条
  • [21] Faster dynamic graph CNN: Faster deep learning on 3d point cloud data
    Hong, Jinseok
    Kim, Keeyoung
    Lee, Hongchul
    IEEE Access, 2020, 8 : 190529 - 190538
  • [22] Quadratic Terms Based Point-to-Surface 3D Representation for Deep Learning of Point Cloud
    Sun, Tiecheng
    Liu, Guanghui
    Li, Ru
    Liu, Shuaicheng
    Zhu, Shuyuan
    Zeng, Bing
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (05) : 2705 - 2718
  • [23] MeteorNet: Deep Learning on Dynamic 3D Point Cloud Sequences
    Liu, Xingyu
    Yan, Mengyuan
    Bohg, Jeannette
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 9245 - 9254
  • [24] Characterization and Analysis of Deep Learning for 3D Point Cloud Analytics
    Hyun, Bongjoon
    Lee, Jiwon
    Rhu, Minsoo
    IEEE COMPUTER ARCHITECTURE LETTERS, 2021, 20 (02) : 106 - 109
  • [25] TREE SPECIES CLASSFIFCATION USING DEEP LEARNING BASED 3D POINT CLOUD TRANSFORMER ON AIRBORNE LIDAR DATA
    Wang, Lanying
    Lu, Dening
    Tan, Weikai
    Chen, Yiping
    Li, Jonathan
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 974 - 977
  • [26] 3D rock fragmentation analysis using lidar, based on point cloud deep learning segmentation and synthetic data
    Hafshejani, Mojgan Faramarzi
    Esmaeili, Kamran
    POWDER TECHNOLOGY, 2025, 456
  • [27] Point Encoder GAN: A deep learning model for 3D point cloud inpainting
    Yu, Yikuan
    Huang, Zitian
    Li, Fei
    Zhang, Haodong
    Le, Xinyi
    Neurocomputing, 2020, 384 : 192 - 199
  • [28] Point Encoder GAN: A deep learning model for 3D point cloud inpainting
    Yu, Yikuan
    Huang, Zitian
    Li, Fei
    Zhang, Haodong
    Le, Xinyi
    NEUROCOMPUTING, 2020, 384 : 192 - 199
  • [29] A learning based 3D reconstruction method for point cloud
    Guo Qi
    Li Jinhui
    2020 IEEE INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, INTL CONF ON CLOUD AND BIG DATA COMPUTING, INTL CONF ON CYBER SCIENCE AND TECHNOLOGY CONGRESS (DASC/PICOM/CBDCOM/CYBERSCITECH), 2020, : 271 - 276
  • [30] Deep learning-based 3D point cloud classification: A systematic survey and outlook
    Zhang, Huang
    Wang, Changshuo
    Tian, Shengwei
    Lu, Baoli
    Zhang, Liping
    Ning, Xin
    Bai, Xiao
    DISPLAYS, 2023, 79