Quantitative characterization of second-phase particles by atomic force microscopy and scanning electron microscopy

被引:7
|
作者
Fruhstorfer, B
Mohles, V
Reichelt, R
Nembach, E
机构
[1] Univ Munster, Inst Mat Phys, D-48149 Munster, Germany
[2] Univ Munster, Univ Klinikum, Inst Med Phys & Biophys, D-48149 Munster, Germany
关键词
D O I
10.1080/01418610210146050
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
It is demonstrated that the surface analysing methods atomic force microscopy (AFM) and scanning electron microscopy (SEM) can be used to determine accurately the average radius r and the volume fraction f of fine (r approximate to 100 nm) spherical particles of secondary phases. Moreover the distribution function of the radii of individual particles can be accurately established by AFM and SEM. This has been exemplified for gamma'-precipitates in the commercial nickel-based superalloy Nimonic PE16. AFM images have to be corrected for two effects: firstly, for the finite size of the tip and, secondly, for the attack of the gamma' particles by the polishing agent. Owing to this latter effect the radii of curvature of the caps of the gamma' particles protruding from the surface of the specimen differ from the true radii of the gamma' particles. The results for f and r obtained by AFM and SEM are in excellent agreement with those gained by transmission electron microscopy.
引用
收藏
页码:2575 / 2589
页数:15
相关论文
共 50 条
  • [41] Transmission electron microscopy observation of second-phase particles in β-Si3N4 grains
    Hirosaki, N
    Saito, T
    Munakata, F
    Akimune, Y
    Ikuhara, Y
    JOURNAL OF MATERIALS RESEARCH, 1999, 14 (07) : 2959 - 2965
  • [42] ATOMIC FORCE MICROSCOPY AND SCANNING TUNNELING MICROSCOPY WITH A COMBINATION ATOMIC FORCE MICROSCOPE SCANNING TUNNELING MICROSCOPE
    MARTI, O
    DRAKE, B
    GOULD, S
    HANSMA, PK
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1988, 6 (03): : 2089 - 2092
  • [43] SCANNING TUNNELING MICROSCOPY AND ATOMIC FORCE MICROSCOPY IN THE CHARACTERIZATION OF ACTIVATED GRAPHITE-ELECTRODES
    FREUND, MS
    BRAJTERTOTH, A
    COTTON, TM
    HENDERSON, ER
    ANALYTICAL CHEMISTRY, 1991, 63 (10) : 1047 - 1049
  • [44] Atomic force microscopy and scanning tunneling microscopy-spectroscopy characterization of ZnO nanobelts
    Maffeis, T. G. G.
    Penny, M. W.
    Brown, M. R.
    Liew, K. W.
    Fu, D.
    Tsolakoglou, N.
    Wright, C. J.
    Wilks, S. P.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2008, 26 (04): : 1606 - 1608
  • [45] Scanning ion conductance microscopy for imaging biological samples in liquid: A comparative study with atomic force microscopy and scanning electron microscopy
    Ushiki, Tatsuo
    Nakajima, Masato
    Choi, MyungHoon
    Cho, Sang-Joon
    Iwata, Futoshi
    MICRON, 2012, 43 (12) : 1390 - 1398
  • [46] Characterization of gold nanoparticle films: Rutherford backscattering spectroscopy, scanning electron microscopy with image analysis, and atomic force microscopy
    Lansaker, Pia C.
    Hallen, Anders
    Niklasson, Gunnar A.
    Granqvist, Claes G.
    AIP ADVANCES, 2014, 4 (10):
  • [47] Atomic force microscopy, scanning electron microscopy and electrochemical characterization of Al alloys, conversion coatings, and primers used for aircraft
    Bierwagen, GP
    Twite, R
    Chen, G
    Tallman, DE
    PROGRESS IN ORGANIC COATINGS, 1997, 32 (1-4) : 25 - 30
  • [48] Application of confocal laser scanning microscopy, atomic force microscopy, and the profilometric method in quantitative fractography
    Cwajna, J
    Roskosz, S
    MATERIALS CHARACTERIZATION, 2001, 46 (2-3) : 183 - 187
  • [49] Scanning (atomic) force microscopy of lipoprotein(a)
    Xu, SH
    BIOPHYSICAL JOURNAL, 1998, 74 (02) : A185 - A185
  • [50] Rotational scanning atomic force microscopy
    Ulcinas, A.
    Vaitekonis, S.
    NANOTECHNOLOGY, 2017, 28 (10)