Image edge detection with a photonic spiking VCSEL-neuron

被引:22
|
作者
Robertson, Joshua [1 ]
Zhang, Yahui [1 ,2 ]
Hejda, Matej [1 ]
Bueno, Julian [1 ]
Xiang, Shuiying [2 ]
Hurtado, Antonio [1 ]
机构
[1] Univ Strathclyde, Inst Photon, SUPA Dept Phys, TIC Ctr, 99 George St, Glasgow G1 1RD, Lanark, Scotland
[2] Xidian Univ, State Key Lab Integrated Serv Networks, Xian 710071, Peoples R China
来源
OPTICS EXPRESS | 2020年 / 28卷 / 25期
基金
英国工程与自然科学研究理事会; 欧盟地平线“2020”; 中国国家自然科学基金;
关键词
NEUROMORPHIC PHOTONICS; EXCITABILITY; ARCHITECTURE; NETWORKS; LASERS;
D O I
10.1364/OE.408747
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We report both experimentally and in theory on the detection of edge features in digital images with an artificial optical spiking neuron based on a vertical-cavity surface-emitting laser (VCSEL). The latter delivers fast (< 100 ps) neuron-like optical spikes in response to optical inputs pre-processed using convolution techniques; hence representing image feature information with a spiking data output directly in the optical domain. The proposed technique is able to detect target edges of different directionalities in digital images by applying individual kernel operators and can achieve complete image edge detection using gradient magnitude. Importantly, the neuromorphic (brain-like) spiking edge detection of this work uses commercially sourced VCSELs exhibiting responses at sub-nanosecond rates (many orders of magnitude faster than biological neurons) and operating at the important telecom wavelength of 1300 nm; hence making our approach compatible with optical communication and data-centre technologies. Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License.
引用
收藏
页码:37526 / 37537
页数:12
相关论文
共 50 条
  • [21] Controllable spiking dynamics in cascaded VCSEL-SA photonic neurons
    Zhang, Zhenxue
    Wu, Zhengmao
    Lu, Dan
    Xia, Guangqiong
    Deng, Tao
    NONLINEAR DYNAMICS, 2020, 99 (02) : 1103 - 1114
  • [22] Controllable spiking dynamics in cascaded VCSEL-SA photonic neurons
    Zhenxue Zhang
    Zhengmao Wu
    Dan Lu
    Guangqiong Xia
    Tao Deng
    Nonlinear Dynamics, 2020, 99 : 1103 - 1114
  • [23] Photonic Spiking VCSEL Neurons using Multi-Frequency Switching
    Fu, Bangqi
    Zhang, Wenjia
    Lu, Yao
    He, Zuyuan
    2021 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXPOSITION (OFC), 2021,
  • [24] Design Of A New Thresholder Using For Spiking Photonic Neuron
    Xu, Ming
    Zhai, MinJun
    Ni, ZhiYang
    Ji, JianHua
    2019 18TH INTERNATIONAL CONFERENCE ON OPTICAL COMMUNICATIONS AND NETWORKS (ICOCN), 2019,
  • [25] Fully memristive spiking -neuron learning framework and its applications on pattern recognition and edge detection
    Tang, Zhiri
    Chen, Yanhua
    Ye, Shizhuo
    Hu, Ruihan
    Wang, Hao
    He, Jin
    Huang, Qijun
    Chang, Sheng
    NEUROCOMPUTING, 2020, 403 (403) : 80 - 87
  • [26] Asynchronous spiking photonic neuron for lightwave neuromorphic signal processing
    Fok, Mable P.
    Tian, Yue
    Rosenbluth, David
    Prucnal, Paul R.
    OPTICS LETTERS, 2012, 37 (16) : 3309 - 3311
  • [27] Stochastic photonic spiking neuron for Bayesian inference with unsupervised learning
    Ma, Bowen
    Zhang, Junfeng
    Li, Xing
    Zou, Weiwen
    OPTICS LETTERS, 2023, 48 (06) : 1411 - 1414
  • [28] Spiking information processing in a single photonic spiking neuron chip with double integrated electronic dendrites
    Zhang, Yahui
    Xiang, Shuiying
    Guo, Xingxing
    Han, Yanan
    Shi, Yuechun
    Chen, Xiangfei
    Han, Genquan
    Hao, Yue
    PHOTONICS RESEARCH, 2023, 11 (12) : 2033 - 2041
  • [29] Spiking information processing in a single photonic spiking neuron chip with double integrated electronic dendrites
    YAHUI ZHANG
    SHUIYING XIANG
    XINGXING GUO
    YANAN HAN
    YUECHUN SHI
    XIANGFEI CHEN
    GENQUAN HAN
    YUE HAO
    Photonics Research , 2023, (12) : 2033 - 2041
  • [30] Spiking Neuron-Astrocyte Networks for Image Recognition
    Lorenzo, Jhunlyn
    Rico-Gallego, Juan-Antonio
    Binczak, Stephane
    Jacquir, Sabir
    NEURAL COMPUTATION, 2025, 37 (04) : 635 - 665