Modelling and Forecasting Inbound Tourism Demand to Croatia using Artificial Neural Networks: A Comparative Study

被引:7
|
作者
Cuhadar, Murat [1 ]
机构
[1] Suleyman Demirel Univ, Fac Econ & Adm Sci, Tourism Management Dept, Isparta, Turkey
来源
JOURNAL OF TOURISM AND SERVICES | 2020年 / 11卷 / 21期
关键词
Modelling; Forecasting; Tourism Demand; ANN's;
D O I
10.29036/jots.v11i21.171
中图分类号
F [经济];
学科分类号
02 ;
摘要
Tourism demand is the basis on which all commercial decisions concerning tourism ultimately depend. Accurate estimation of tourism demand is essential for the tourism industry because it can help reduce risk and uncertainty as well as effectively provide basic information for better tourism planning. The purpose of this study is to develop the optimal forecasting model that yields the highest accuracy when compared to the forecast performances of three different methods, namely Artificial Neural Network (ANN), Exponential Smoothing, and Box-Jenkins methods for forecasting monthly inbound tourist flows to Croatia. Prior studies have been applied to forecast tourism demand to Croatia based on time series models and casual methods. However, the monthly and comparative tourism demand forecasting studies using ANNs are still limited, and this paper aims to fill this gap. The number of monthly foreign tourist arrivals to Croatia covers the period between January 2005-December 2019 data were used to build optimal forecasting models. Forecasting performances of the models were measured by Mean Absolute Percentage Error (MAPE) statistics. As a result of the experiments carried out, when compared to the forecasting performances of various models, 12 lagged ANN models, which have [4-3-1] architecture, were seen to perform best among all models applied in this study. Considering both the empirical findings obtained from this study and previous studies on tourism forecasting, it can be seen that ANN models that do not have any negativities (such as over-training, faulty architecture, etc.) produce successful forecasting results when compared with results generated by conventional statistical methods.
引用
收藏
页码:55 / 70
页数:16
相关论文
共 50 条
  • [21] Demand Forecasting Using Artificial Neural Networks-A Case Study of American Retail Corporation
    Chawla, Aditya
    Singh, Amrita
    Lamba, Aditya
    Gangwani, Naman
    Soni, Umang
    APPLICATIONS OF ARTIFICIAL INTELLIGENCE TECHNIQUES IN ENGINEERING, VOL 2, 2019, 697 : 79 - 89
  • [22] Tourism demand forecasting using graph neural network
    Liang, Xuedong
    Li, Xiaoyan
    Shu, Lingli
    Wang, Xia
    Luo, Peng
    CURRENT ISSUES IN TOURISM, 2025, 28 (06) : 982 - 1001
  • [23] Artificial Neural Networks for Demand Forecasting: Application Using Moroccan Supermarket Data
    Slimani, Ilham
    El Farissi, Ilhame
    Achchab, Said
    2015 15TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS (ISDA), 2015, : 266 - 271
  • [24] Demand Forecasting for Domestic Air Transportation in Turkey using Artificial Neural Networks
    Koc, Ismail
    Arslan, Emel
    2018 6TH INTERNATIONAL CONFERENCE ON CONTROL ENGINEERING & INFORMATION TECHNOLOGY (CEIT), 2018,
  • [25] Long Term Electricity Demand Forecasting in Turkey Using Artificial Neural Networks
    Cunkas, M.
    Altun, A. A.
    ENERGY SOURCES PART B-ECONOMICS PLANNING AND POLICY, 2010, 5 (03) : 279 - 289
  • [26] Decomposition Methods for Tourism Demand Forecasting: A Comparative Study
    Zhang, Chengyuan
    Li, Mingchen
    Sun, Shaolong
    Tang, Ling
    Wang, Shouyang
    JOURNAL OF TRAVEL RESEARCH, 2022, 61 (07) : 1682 - 1699
  • [27] Study on Daily Demand Forecasting Orders Using Artificial Neural Network
    Ferreira, R. P.
    Martiniano, A.
    Ferreira, A.
    Ferreira, A.
    Sassi, R. J.
    IEEE LATIN AMERICA TRANSACTIONS, 2016, 14 (03) : 1519 - 1525
  • [28] A Study of Load Demand Forecasting Models in Electricity Using Artificial Neural Networks and Fuzzy Logic Model
    Al-ani, B. R. K.
    Erkan, E. T.
    INTERNATIONAL JOURNAL OF ENGINEERING, 2022, 35 (06): : 1 - 8
  • [29] Demand Forecasting Using a Hybrid Model Based on Artificial Neural Networks: A Study Case on Electrical Products
    Quinones, Hector
    Rubiano, Oscar
    Alfonso, Wilfredo
    JOURNAL OF INDUSTRIAL ENGINEERING AND MANAGEMENT-JIEM, 2023, 16 (02): : 363 - 381