Gauge theories on a space-time that is deformed by the Moyal-Weyl product are constructed by twisting the coproduct for gauge transformations. This way a deformed Leibniz rule is obtained, which is used to construct gauge invariant quantities. The connection will be enveloping algebra valued in a particular representation of the Lie algebra. This gives rise to additional fields, which couple only weakly via the deformation parameter theta and reduce in the commutative limit to free fields. Consistent field equations that lead to conservation laws are derived and some properties of such theories are discussed.