Optical free-space communications at middle infra-red wavelengths

被引:8
|
作者
Martini, R [1 ]
Glazowski, C [1 ]
Whittaker, EA [1 ]
Harper, WW [1 ]
Su, YF [1 ]
Shultz, JF [1 ]
Gmachl, C [1 ]
Capasso, F [1 ]
Sivco, DL [1 ]
Cho, AY [1 ]
机构
[1] Stevens Inst Technol, Hoboken, NJ 07030 USA
来源
关键词
semiconductor lasers; optical communications; atmospheric optical propagation; infrared spectroscopy;
D O I
10.1117/12.516517
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We consider the application of mid-infrared (MIR) wavelength quantum cascade lasers (QCL) as sources for free-space optical communications. QCL's possess high modulation bandwidth and excellent optical performance in the atmospherically transparent MIR spectral range. In order to investigate this potential application area, we have performed a series of comparative evaluations on analog and digital free-space optical links operating in the near-infrared (NIR) (830nm, 1300nm and 1550nm) and mid-infrared (8mum). The measurements were made using well controlled atmospheric conditions in the 65ft long Pacific Northwest National Laboratory's Aerosol Wind Tunnel Research Facility using water vapor, oil vapor and dust as the scattering media. We measured the transmitted intensity as a function of the density of scatterers in the tunnel. We also performed bit error rate analysis of signals transmitted at the DS-3 data rate. The QCL link consistently showed a higher performance level when compared to the NIR links for water fog, oil fog and dust scattering.
引用
收藏
页码:196 / 202
页数:7
相关论文
共 50 条
  • [31] LDPC Decoding Techniques for Free-Space Optical Communications
    Youssef, Albashir Adel
    Abaza, Mohamed
    Alatawi, Ayshah S.
    IEEE ACCESS, 2021, 9 : 133510 - 133519
  • [32] Adaptive transceivers for mobile free-space optical communications
    Minch, Jeffrey R.
    Gervais, David R.
    Townsend, Daniel J.
    MILCOM 2006, VOLS 1-7, 2006, : 2813 - +
  • [33] Plenoptic Wavefront Sensor For Free-Space Optical Communications
    Martinez, Noelia
    Rodriguez Ramos, Luis Fernando
    Alonso, Angel
    Montilla, Iciar
    Socas Negrin, Jorge
    Torras, Joan
    FREE-SPACE LASER COMMUNICATIONS XXXIV, 2022, 11993
  • [34] Recent Trends in Coherent Free-Space Optical Communications
    Zhang, Chao
    Uyama, Kota
    Zhang, Zheyuan
    Jin, Lei
    Set, Sze Yun
    Yamashita, Shinji
    Glick, Madeleine
    Srivastava, Atul K.
    Akasaka, Youichi
    METRO AND DATA CENTER OPTICAL NETWORKS AND SHORT-REACH LINKS IV, 2021, 11712
  • [35] Modal Diversity for Robust Free-Space Optical Communications
    Cox, Mitchell A.
    Cheng, Ling
    Rosales-Guzman, Carmelo
    Forbes, Andrew
    PHYSICAL REVIEW APPLIED, 2018, 10 (02):
  • [36] DLR EXPERIMENTAL SYSTEMS FOR FREE-SPACE OPTICAL COMMUNICATIONS
    FRANZ, J
    RAPP, C
    WANDERNOTH, B
    LECTURE NOTES IN CONTROL AND INFORMATION SCIENCES, 1992, 182 : 180 - 196
  • [37] Air Channel Measurement in Free-Space Optical Communications
    Yuan, Xiaorui
    Zou, Ruotong
    Li, Ming
    Han, Jiawei
    Wang, Xiaocheng
    COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, VOL. 1, 2022, 878 : 1096 - 1102
  • [38] Coherent Free-Space Optical Communications: Opportunities and Challenges
    Guiomar, Fernando P.
    Fernandes, Marco A.
    Nascimento, Jose Leonardo
    Rodrigues, Vera
    Monteiro, Paulo P.
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2022, 40 (10) : 3173 - 3186
  • [39] Advancing free-space optical communications with adaptive optics
    Elon Graves, J.
    Drenker, Steve
    Lightwave, 2002, 19 (09): : 105 - 106
  • [40] Free-Space Optical Communications: Soar with the Satellite Sector
    Freebody, Marie
    Photonics Spectra, 2023, 57 (02) : 34 - 39