Water conservation potential of smart irrigation controllers on St. Augustinegrass

被引:96
|
作者
McCready, M. S. [1 ]
Dukes, M. D. [1 ]
Miller, G. L. [2 ]
机构
[1] Univ Florida, Dept Agr & Biol Engn, Gainesville, FL 32611 USA
[2] N Carolina State Univ, Dept Crop Sci, Raleigh, NC 27695 USA
关键词
Soil moisture sensor; Rain sensor; Evapotranspiration controller; Turfgrass;
D O I
10.1016/j.agwat.2009.06.007
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
A variety of technologies for reducing residential irrigation water use are available to homeowners. These "Smart Irrigation" technologies include evapotranspiration (ET)-based controllers and soil Moisture sensor (SMS) controllers. The purpose of this research was to evaluate the effectiveness of these technologies, along with rain sensors, based on irrigation applied and turfgrass quality measurements on St. Augustinegrass (Stenotophrum secundatum (Walter) Kuntze). Testing was performed on two types of SMS controllers (LawnLogic LL1004 and Acclima Digital TDT RS500) at three soil moisture threshold settings. Mini-Clik rain sensors (RS) comprised six treatments at two rainfall thresholds (3 mm and 6 mm) and three different irrigation frequencies (1, 2, and 7 d/wk). Two ET controllers were also tested, the Toro Intelli-Sense controller and the Rain Bird ET Manager. A time-based treatment with 2 days of irrigation per week without any type of sensor (WOS) to bypass irrigation was established as a comparison. All irrigation controller programming represented settings that might be used in residential/commercial landscapes. Even though three of the four testing periods were relatively dry, all of the technologies tested managed to reduce water application compared to the WOS treatment, with most treatments also producing acceptable turf quality. Reductions in irrigation applied were as follows: 7-30% for RS-based treatments, 0-74% for SMS-based treatments, and 25-62% for ET-based treatments. The SMS treatments at low threshold settings resulted in high water savings, but reduced turf quality to unacceptable levels. The medium threshold setting (approximately field capacity) SMS-based treatment produced good turfgrass quality while reducing irrigation water use compared to WOS by 11-53%. ET controllers with comparable settings and good turf quality had -20% to 59% savings. Reducing the irrigation schedule (treatment DWRS) by 40% and using a rain sensor produced water savings between 36% and 53% similar to smart controllers. Proper installation and programming of each of the technologies was essential element to balancing water conservation and acceptable turf quality. Water savings with the SMS controllers could have been increased with a reduced time-based irrigation schedule. Efficiency settings of 100% (DWRS) and 95% (TORO) did not reduce turf quality below acceptable limits and resulted in substantial irrigation savings, indicating that efficiency values need not be low in well designed and maintained irrigation systems. For most conditions in Florida, the DWRS schedule (60% of schedule used for SMS treatments) can be used with either rain sensors or soil moisture sensors in bypass control mode as long as the irrigation system has good coverage and is in good repair. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1623 / 1632
页数:10
相关论文
共 50 条
  • [41] St. Augustinegrass sod production subjected nitrogen rates
    Grava de Godoy, Leandro Jose
    Villas Boas, Roberto Lyra
    Backes, Clarice
    SEMINA-CIENCIAS AGRARIAS, 2012, 33 (05): : 1703 - 1716
  • [42] Historical ETo-based irrigation scheduling for St. Augustinegrass Lawns in the South-Central United States
    Fontanier, Charles
    Wherley, Benjamin
    White, Richard
    Aitkenhead-Peterson, Jacqueline
    Chalmers, David
    IRRIGATION SCIENCE, 2017, 35 (04) : 347 - 356
  • [43] Historical ETo-based irrigation scheduling for St. Augustinegrass Lawns in the South-Central United States
    Charles Fontanier
    Benjamin Wherley
    Richard White
    Jacqueline Aitkenhead-Peterson
    David Chalmers
    Irrigation Science, 2017, 35 : 347 - 356
  • [44] NITRATE LEACHING AND TURF QUALITY IN NEWLY SODDED ST. AUGUSTINEGRASS
    Trenholm, L. E.
    Unruh, J. B.
    Sartain, J. B.
    JOURNAL OF PLANT NUTRITION, 2013, 36 (12) : 1935 - 1943
  • [45] St. Augustinegrass Germplasm Resistant to Blissus insularis (Hemiptera: Blissidae)
    Youngs, Katharine M.
    Milla-Lewis, Susana R.
    Brandenburg, Rick L.
    Cardoza, Yasmin J.
    JOURNAL OF ECONOMIC ENTOMOLOGY, 2014, 107 (04) : 1688 - 1694
  • [46] The potential contribution of precision irrigation to water conservation
    Al-Kufaishi, SA
    Blackmore, BS
    Sourell, H
    PRECISION AGRICULTURE 05, 2005, : 943 - 950
  • [47] PHYSIOLOGICAL-RESPONSE OF ST-AUGUSTINEGRASS TO IRRIGATION SCHEDULING
    PEACOCK, CH
    DUDECK, AE
    AGRONOMY JOURNAL, 1984, 76 (02) : 275 - 279
  • [48] Differential Orthophosphate Leaching in Empire Zoysiagrass and Floratam St. Augustinegrass
    Gonzalez, Ronald F.
    Sartain, Jerry B.
    O'Connor, George A.
    Obreza, Thomas A.
    Harris, Willie
    Kruse, Jason
    HORTSCIENCE, 2010, 45 (08) : S72 - S72
  • [49] Impact of cultural factors on weed populations in St. Augustinegrass turf
    Busey, Philip
    Johnston, Diane L.
    WEED SCIENCE, 2006, 54 (05) : 961 - 967
  • [50] Morphological mutants of St. Augustinegrass induced by gamma ray irradiation
    Li, R.
    Bruneau, A. H.
    Qu, R.
    PLANT BREEDING, 2010, 129 (04) : 412 - 416