G-covering systems of subgroups for the class of supersoluble groups

被引:8
|
作者
Li, Y. [1 ]
机构
[1] Nanchang Univ, Nanchang, Jiangxi, Peoples R China
[2] Guangdong Inst Educ, Guangzhou, Peoples R China
关键词
Sylow subgroup; supplement; supersoluble group; covering system;
D O I
10.1007/s11202-006-0059-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F be a class of groups. Given a group G, assign to G some set of its subgroups Sigma = Sigma(G). We say that Sigma is a G-covering system of subgroups for F (or, in other words, an F-covering system of subgroups in G) if G is an element of F wherever either Sigma = empty set or Sigma not equal empty set and every subgroup in Sigma belongs to F. In this paper, we provide some nontrivial sets of subgroups of a finite group G which are G-covering subgroup systems for the class of supersoluble groups. These are the generalizations of some recent results, such as in [1-3].
引用
收藏
页码:474 / 480
页数:7
相关论文
共 50 条
  • [21] On large orbits of supersoluble subgroups of linear groups
    Meng, H.
    Ballester-Bolinches, A.
    Esteban-Romero, R.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2020, 101 (02): : 490 - 504
  • [22] A class of generalized supersoluble groups
    Ballester-Bolinches, A
    Pedraza, T
    PUBLICACIONS MATEMATIQUES, 2005, 49 (01) : 213 - 223
  • [23] A NOTE ON GROUPS WITH MANY LOCALLY SUPERSOLUBLE SUBGROUPS
    De Giovanni, Francesco
    Trombetti, Marco
    INTERNATIONAL JOURNAL OF GROUP THEORY, 2015, 4 (02) : 1 - 7
  • [24] Groups with Supersoluble Non-normal Subgroups
    De Falco, Maria
    Martusciello, Maria
    Musella, Carmelo
    ALGEBRA COLLOQUIUM, 2016, 23 (02) : 213 - 218
  • [25] Galois G-covering of quotients of linear categories
    Hu, Yonggang
    Zhou, Panyue
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2023, 227 (04)
  • [26] Covering groups with subgroups
    Bryce, RA
    Fedri, V
    Serena, L
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1997, 55 (03) : 469 - 476
  • [27] Finite groups that are products of two normal supersoluble subgroups
    X. Tang
    Yu Ye
    W. Guo
    Siberian Mathematical Journal, 2017, 58 : 319 - 328
  • [28] On Finite Groups that are the Product of Two Subnormal Supersoluble Subgroups
    John COSSEY
    Yang Ming LI
    ActaMathematicaSinica,EnglishSeries, 2023, (01) : 30 - 36
  • [29] On Subgroups of Finite Non-p-supersoluble Groups
    Yang, Nanying
    Yi, Xiaolan
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2013, 37 (03) : 455 - 464
  • [30] On Finite Groups that are the Product of Two Subnormal Supersoluble Subgroups
    John Cossey
    Yang Ming Li
    Acta Mathematica Sinica, English Series, 2023, 39 : 30 - 36