Modeling the Conditional Distribution of Daily Stock Index Returns: An Alternative Bayesian Semiparametric Model

被引:15
|
作者
Kalli, Maria [1 ]
Walker, Stephen G. [2 ]
Damien, Paul [3 ]
机构
[1] Canterbury Christ Church Univ, Sch Business, Canterbury CT2 7NF, Kent, England
[2] Univ Kent, Sch Math Stat & Actuarial Sci, Canterbury CT2 7NF, Kent, England
[3] Univ Texas Austin, McCombs Business Sch, Austin, TX 78712 USA
关键词
Infinite uniform mixture; Markov chain Monte Carlo; Slice sampling; Stick-breaking processes; FAT TAILS; VOLATILITY; PERSISTENCE; INFERENCE; KURTOSIS;
D O I
10.1080/07350015.2013.794142
中图分类号
F [经济];
学科分类号
02 ;
摘要
This article introduces a new family of Bayesian semiparametric models for the conditional distribution of daily stock index returns. The proposed models capture key stylized facts of such returns, namely, heavy tails, asymmetry, volatility clustering, and the "leverage effect." A Bayesian nonparametric prior is used to generate random density functions that are unimodal and asymmetric. Volatility is modeled parametrically. The new model is applied to the daily returns of the S&P 500, FTSE 100, and EUROSTOXX 50 indices and is compared with GARCH, stochastic volatility, and other Bayesian semiparametric models.
引用
收藏
页码:371 / 383
页数:13
相关论文
共 50 条
  • [31] Modeling Conditional Factor Risk Premia Implied by Index Option Returns
    Fournier, Mathieu
    Jacobs, Kris
    Orlowski, Piotr
    JOURNAL OF FINANCE, 2024, 79 (03): : 2289 - 2338
  • [32] Modeling Daily Stock Returns under Price Limits: An Empirical Analysis of China Stock Market
    Liu Guofang
    PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON INNOVATION AND MANAGEMENT, VOLS I AND II, 2009, : 740 - 744
  • [33] Forecasting stock market index daily direction: A Bayesian Network approach
    Malagrino, Luciana S.
    Roman, Norton T.
    Monteiro, Ana M.
    EXPERT SYSTEMS WITH APPLICATIONS, 2018, 105 : 11 - 22
  • [34] Model-averaging-based semiparametric modeling for conditional quantile prediction
    Chaohui Guo
    Wenyang Zhang
    Science China(Mathematics), 2024, 67 (12) : 2843 - 2872
  • [35] Bivariate sub-Gaussian model for stock index returns
    Jablonska-Sabuka, Matylda
    Teuerle, Marek
    Wylomanska, Agnieszka
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2017, 486 : 628 - 637
  • [36] Model-averaging-based semiparametric modeling for conditional quantile prediction
    Guo, Chaohui
    Zhang, Wenyang
    SCIENCE CHINA-MATHEMATICS, 2024, 67 (12) : 2843 - 2872
  • [37] Modeling Nonnormality of Chinese Stock Returns: Jump, GED Distribution or T Distribution?
    Lin, Hai
    2008 4TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, NETWORKING AND MOBILE COMPUTING, VOLS 1-31, 2008, : 9803 - 9806
  • [38] Modelling conditional heteroskedasticity in JS']JSE stock returns using the Generalised Pareto Distribution
    Sigauke, Caston
    Makhwiting, Rhoda M.
    Lesaoana, Maseka
    AFRICAN REVIEW OF ECONOMICS AND FINANCE-AREF, 2014, 6 (01): : 41 - 55
  • [39] Supply chain constraints and the predictability of the conditional distribution of international stock market returns and volatility
    Bouri, Elie
    Cepni, Oguzhan
    Gupta, Rangan
    Liu, Ruipeng
    ECONOMICS LETTERS, 2025, 247
  • [40] Density prediction of stock index returns using GARCH models: Frequentist or Bayesian estimation?
    Hoogerheide, Lennart F.
    Ardia, David
    Corre, Nienke
    ECONOMICS LETTERS, 2012, 116 (03) : 322 - 325