共 50 条
Investigating the pavement performance and aging resistance of modified bio-asphalt with nano-particles
被引:21
|作者:
Ren, Jiaolong
[1
]
Zang, Guangyuan
[1
]
Wang, Siyuan
[1
]
Shi, Jun
[1
]
Wang, Yuanyuan
[2
]
机构:
[1] Shandong Univ Technol, Sch Civil & Architectural Engn, Zibo, Shandong, Peoples R China
[2] Hubei Univ Arts & Sci, Sch Civil Engn & Architecture, Xiangyang, Hubei, Peoples R China
来源:
基金:
中国国家自然科学基金;
关键词:
MECHANICAL-PROPERTIES;
MODIFIED BITUMEN;
NANOMATERIALS;
BEHAVIOR;
SILICA;
D O I:
10.1371/journal.pone.0238817
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Bio-asphalt binders have been proposed as replacements for traditional asphalt binders, owing to advantages such as environmental protection, low costs, and abundant resources. However, a limitation of bio-asphalt binders is that their high-temperature performance is not suitable for pavement construction. In recent years, nano-particles have been widely used to improve the pavement performance of asphalt binders, particularly the high-temperature performance. Thus, the nano-particles might also provide a positive modified effect on the high-temperature performance of bio-asphalt binders. Based on this, five types of nano-particles including SiO2, CaCO3, TiO2, Fe2O3, and ZnO are selected for the preparation of modified bio-asphalt binders, using different dosages of nano-particles and bio-oil. The high- and low-temperature performances, aging resistance, workable performance, and water stability of the nano-modified bio-asphalt binders and mixtures are investigated. The results reveal that, the high-temperature performance and aging resistance of the nano-modified bio-asphalt binders and mixtures are improved at increased nano-particle dosages, whereas their low-temperature performance is slightly weakened. The effects of the nano-particles on the workable performance and water stability are insignificant.
引用
收藏
页数:16
相关论文