Mooring and Hydrostatic Restoring of Offshore Floating Wind Turbine Platforms

被引:0
|
作者
Al-Solihat, Mohammed Khair [1 ]
Nahon, Meyer [1 ]
机构
[1] McGill Univ, Ctr Intelligent Machines, Montreal, PQ H3A 2K6, Canada
来源
关键词
floating wind turbines; hydrostatic stiffness; mooring stiffness; offshore platforms; mooring system; STIFFNESS;
D O I
暂无
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
This paper investigates the restoring stiffness of the main platform concepts proposed for offshore floating wind turbine (FWT) systems; namely, barge, spar, tension leg platform (TLP). The overall system stiffness is partly due to the hydrostatics, and partly due to mooring. The hydrostatic stiffness matrix is formulated using the linear hydrostatic approach that assumes small platform rotation. A new analytical form of the mooring stiffness matrix for a taut-leg platform is presented and subsequently used to formulate the TLP mooring stiffness. While a numerical approach, is used for the other two platform types. The hydrostatic and mooring stiffness coefficients for the surge, sway, heave, roll, pitch and yaw degrees of the freedom (DOF) are computed for the different types of platforms. For each DOF, the magnitude of stiffness from both hydrostatics and moorings are compared.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Effect of mooring system stiffness on floating offshore wind turbine loads in a passively self-adjusting floating wind farm
    Mahfouz, Mohammad Youssef
    Cheng, Po Wen
    RENEWABLE ENERGY, 2025, 238
  • [42] DYNAMIC ANALYSIS OF AN OFFSHORE FISH FARM INTEGRATED WITH A FLOATING OFFSHORE WIND TURBINE USING SHARED MOORING LINE
    Ma, Yu
    Li, Lin
    Ong, Muk Chen
    Jin, Jingzhe
    Su, Biao
    PROCEEDINGS OF ASME 2023 42ND INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE & ARCTIC ENGINEERING, OMAE2023, VOL 4, 2023,
  • [43] Transient response reduction of floating offshore wind turbine subjected to sudden mooring line failure
    Subbulakshmi, A.
    Verma, Mohit
    OCEAN ENGINEERING, 2023, 271
  • [44] Stability Analysis and Environmental Influence Evaluation on a Hybrid Mooring System for a Floating Offshore Wind Turbine
    Lin, Tzu-Hsun
    Yang, Ray-Yeng
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (12)
  • [45] Prediction of ultimate tensions in mooring lines for a floating offshore wind turbine considering extreme gusts
    Zhang, Xu
    He, Haolang
    Hao, Hongbin
    Ma, Yong
    ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS, 2024, 18 (01)
  • [46] A comprehensive numerical model for aero-hydro-mooring analysis of a floating offshore wind turbine
    Haider, Rizwan
    Shi, Wei
    Cai, Yefeng
    Lin, Zaibin
    Li, Xin
    Hu, Zhiqiang
    RENEWABLE ENERGY, 2024, 237
  • [47] Drift simulation of a floating offshore wind turbine with broken mooring lines in a dynamic sea condition
    Lin, Yu-Hsien
    Huang, Yan-Ru
    OCEAN ENGINEERING, 2022, 266
  • [48] PRELIMINARY INVESTIGATION OF A SHARED MOORING ARRANGEMENT FOR A FLOATING OFFSHORE WIND TURBINE FARM IN DEEP WATER
    Wang, Yutao
    Wolgamot, Hugh
    Watson, Phillip
    Zhao, Wenhua
    Milne, Ian
    Gaudin, Christophe
    PROCEEDINGS OF ASME 2022 41ST INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE & ARCTIC ENGINEERING, OMAE2022, VOL 8, 2022,
  • [49] Alternative Mooring Systems for a Very Large Offshore Wind Turbine Supported by a Semisubmersible Floating Platform
    Liu, Jinsong
    Manuel, Lance
    JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2018, 140 (05):
  • [50] Study on characteristics of mooring system of a new floating offshore wind turbine in shallow water by experiment
    Huo, Fali
    Xu, Jie
    Yang, Hongkun
    Yuan, Zhaojun
    Shen, Zhongxiang
    FRONTIERS IN ENERGY RESEARCH, 2023, 10