Sodium compensation and interface protection effects of Na3PS3O for sodium-ion batteries with P2-type oxide cathodes

被引:17
|
作者
Liao, Jihui [1 ]
Zhang, Fengping [1 ]
Lu, Yao [1 ]
Ren, Jian [1 ]
Wu, Wenwei [1 ]
Xu, Zhen [2 ]
Wu, Xuehang [1 ]
机构
[1] Guangxi Univ, Sch Chem & Chem Engn, Guangxi Key Lab Proc Nonferrous Met & Featured Ma, Nanning 530004, Peoples R China
[2] Qilu Univ Technol, Shandong Acad Sci, Sch Chem & Chem Engn, Jinan 250353, Peoples R China
关键词
P2-type oxides; Na < sub > 3 <; sub > PS < sub > 3 <; sub > O; Sodium compensation; Interface protection; Sodium-ion batteries; HIGH-ENERGY; REDOX;
D O I
10.1016/j.cej.2022.135275
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Irreversible interfacial reactions occurring on non-sodium-containing anodes and P2-type oxide cathodes can significantly reduce the availability of active sodium ions in full-cells, which is unfavorable for realizing high energy density. In this work, we propose the use of oxygen-doped sodium thiophosphate, Na3PS3O (NPSO), as a self-sacrificing cathode additive for sodium compensation in liquid batteries. The uniform dispersion of NPSO into the Na0.66Ni0.26Zn0.07Mn0.67O2 (NNZM) cathode can be realized by a solution-casting method. The continuous irreversible decomposition of NPSO provides a total sodiation capacity of over 300 mAh g-1 with approximately 60% capacity delivered below 4.0 V. Besides compensating for sodium consumption, NPSO and its non-gaseous decomposition products effectively suppress the growth of cathode electrolyte interphase films caused by electrolyte decomposition and the formation of oxygen vacancies in the crystal structure of NNZM. Coating of NPSO on conventional NNZM cathodes leads to an increase in the capacity retention of half-cells from 62.1% to 83.3% and the energy density of full-cells by 29.7%. This work opens up a new application field for sodium thiophosphates.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] P2-Type Layered Oxide Cathode with Honeycomb-Ordered Superstructure for Sodium-Ion Batteries
    Yin, Wenyu
    Huang, Zhixiong
    Zhang, Tengfei
    Yang, Tianqi
    Ji, Houpeng
    Zhou, Yujia
    Shi, Shaojun
    Zhang, Yongqi
    SSRN, 2024,
  • [32] Understanding and Optimizing Li Substitution in P2-Type Sodium Layered Oxides for Sodium-Ion Batteries
    Xu, Mingfeng
    Gammaitoni, Giovanni
    Haefner, Michael
    Villalobos-Portillo, Eduardo
    Marini, Carlo
    Bianchini, Matteo
    ADVANCED FUNCTIONAL MATERIALS, 2025,
  • [33] P2-type Na0.67Fe0.3Mn0.3Co0.4O2 cathodes for high-performance sodium-ion batteries
    Zhou, Dengmei
    Huang, Wanxia
    Zhao, Fenglin
    SOLID STATE IONICS, 2018, 322 : 18 - 23
  • [34] Copper Substitution in P2-Type Sodium Layered Oxide To Mitigate Phase Transition and Enhance Cyclability of Sodium-Ion Batteries
    Wen, Yanfen
    Huang, Zheng
    Le, Jiabo
    Dai, Peng
    Shi, Chenguang
    Li, Gen
    Zhou, Shiyuan
    Fan, Jingjing
    Zhuang, Shuxin
    Lu, Mi
    Huang, Ling
    Sun, Shi-Gang
    ACS APPLIED MATERIALS & INTERFACES, 2022, : 29813 - 29821
  • [35] Cobalt substituted layered O3 and P2-type Na-Ti-Ni-Co-O anode materials for emerging sodium-ion batteries
    Kannan, K.
    Kouthaman, M.
    Arjunan, P.
    Subadevi, R.
    Sivakumar, M.
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2021, 102 : 363 - 369
  • [36] O3-Type Cathodes for Sodium-Ion Batteries: Recent Advancements and Future Perspectives
    Li, Xinghan
    Fan, Yameng
    Johannessen, Bernt
    Xu, Xun
    See, Khay Wai
    Pang, Wei Kong
    BATTERIES & SUPERCAPS, 2024, 7 (05)
  • [37] Electrochemical mechanism of high Na-content P2-type layered oxides for sodium-ion batteries
    Yang, Ying
    Wei, Wei-Feng
    RARE METALS, 2020, 39 (04) : 332 - 334
  • [38] Electrochemical mechanism of high Na-content P2-type layered oxides for sodium-ion batteries
    Ying Yang
    Wei-Feng Wei
    Rare Metals, 2020, 39 : 332 - 334
  • [39] Electrochemical mechanism of high Na-content P2-type layered oxides for sodium-ion batteries
    Ying Yang
    Wei-Feng Wei
    Rare Metals, 2020, 39 (04) : 332 - 334
  • [40] Structural Regulation of P2-Type Layered Oxide with Anion/Cation Codoping Strategy for Sodium-Ion Batteries
    Wang, Xu
    Yang, Zixiang
    Chen, Dongliang
    Lu, Bin
    Zhang, Qinghua
    Hou, Yang
    Wu, Zhenguo
    Ye, Zhizhen
    Li, Tongtong
    Lu, Jianguo
    Advanced Functional Materials, 2024,