Point Cloud Completion Using Extrusions

被引:0
|
作者
Kroemer, Oliver [1 ]
Ben Amor, Heni [1 ]
Ewerton, Marco [1 ]
Peters, Jan [1 ]
机构
[1] Tech Univ Darmstadt, Intelligent Autonomous Syst, Darmstadt, Germany
来源
2012 12TH IEEE-RAS INTERNATIONAL CONFERENCE ON HUMANOID ROBOTS (HUMANOIDS) | 2012年
关键词
D O I
暂无
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
In this paper, we propose modelling objects using extrusion-based representations, which can be used to complete partial point clouds. These extrusion-based representations are particularly well-suited for modelling basic household objects that robots will often need to manipulate. In order to efficiently complete a partial point cloud, we first detect planar reflection symmetries. These symmetries are then used to determine initial candidates for extruded shapes in the point clouds. These candidate solutions are then used to locally search for a suitable set of parameters to complete the point cloud. The proposed method was tested on real data of household objects and it successfully detected the extruded shapes of the objects. By using the extrusion-based representation, the system could accurately capture various details of the objects' shapes.
引用
收藏
页码:680 / 685
页数:6
相关论文
共 50 条
  • [21] Cascaded Refinement Network for Point Cloud Completion
    Wang, Xiaogang
    Ang, Marcelo H., Jr.
    Lee, Gim Hee
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 787 - 796
  • [22] FPTNet: Full Point Transformer Network for Point Cloud Completion
    Wang, Chunmao
    Yan, Xuejun
    Wang, Jingjing
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT II, 2024, 14426 : 142 - 154
  • [23] Learning Local Displacements for Point Cloud Completion
    Wang, Yida
    Tan, David Joseph
    Navab, Nassir
    Tombari, Federico
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 1558 - 1567
  • [24] Hyperbolic Chamfer Distance for Point Cloud Completion
    Lin, Fangzhou
    Yue, Yun
    Hou, Songlin
    Yu, Xuechu
    Xu, Yajun
    Yamada, Kazunori D.
    Zhang, Ziming
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 14549 - 14560
  • [25] Relationship-Based Point Cloud Completion
    Zhao, Xi
    Zhang, Bowen
    Wu, Jinji
    Hu, Ruizhen
    Komura, Taku
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2022, 28 (12) : 4940 - 4950
  • [26] Regional dynamic point cloud completion network
    Zhu, Liping
    Yang, Yixuan
    Liu, Kai
    Wu, Silin
    Wang, Bingyao
    Chang, Xianxiang
    PATTERN RECOGNITION LETTERS, 2024, 186 : 322 - 329
  • [27] FinerPCN: High fidelity point cloud completion network using pointwise convolution
    Chang, Yakun
    Jung, Cheolkon
    Xu, Yuanquan
    NEUROCOMPUTING, 2021, 460 : 266 - 276
  • [28] MLFT-Net: Point Cloud Completion Using MultiLevel Feature Transformer
    Du, Yueling
    Xie, Jin
    2022 6TH INTERNATIONAL SYMPOSIUM ON COMPUTER SCIENCE AND INTELLIGENT CONTROL, ISCSIC, 2022, : 159 - 165
  • [29] Point cloud completion via structured feature maps using feedback network
    Su, Zejia
    Huang, Haibin
    Ma, Chongyang
    Huang, Hui
    Hu, Ruizhen
    COMPUTATIONAL VISUAL MEDIA, 2023, 9 (01) : 71 - 85
  • [30] Point cloud completion via structured feature maps using a feedback network
    Zejia Su
    Haibin Huang
    Chongyang Ma
    Hui Huang
    Ruizhen Hu
    Computational Visual Media, 2023, 9 : 71 - 85