Extreme Learning Machine Model for State-of-Charge Estimation of Lithium-Ion Battery Using Gravitational Search Algorithm

被引:147
|
作者
Lipu, Molla S. Hossain [1 ]
Hannan, Mahammad A. [2 ]
Hussain, Aini [1 ]
Saad, Mohamad H. [1 ]
Ayob, Afida [1 ]
Uddin, Mohammad Nasir [3 ]
机构
[1] Univ Kebangsaan Malaysia, Fac Engn & Built Environm, Bangi 43600, Malaysia
[2] Univ Tenaga Nas, Dept Elect Power Engn, Kajang 43000, Malaysia
[3] Lakehead Univ, Fac Engn, Thunder Bay, ON P7B 5E1, Canada
关键词
Electric vehicle; extreme learning machine; gravitational search algorithm; lithium-ion NMC battery; state of charge (SOC); NEURAL-NETWORK MODEL; OPEN-CIRCUIT VOLTAGE; ONLINE ESTIMATION;
D O I
10.1109/TIA.2019.2902532
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper develops a state-of-charge (SOC) estimation model for a lithium-ion battery using an improved extreme learning machine (ELM) algorithm. ELM is suitable for an SOC estimation since the ELM algorithm has fast estimation speed, good generalization performance, and high accuracy. However, the performance of ELM is highly dependent on training accuracy and the number of neurons in a hidden layer. Hence, a gravitational search algorithm (GSA) is applied to improve the ELM computational intelligence by searching for the optimal value hidden layer neurons. The optimal ELM-based GSA model does not require internal battery knowledge and mathematical model for an SOC estimation. The model robustness is validated at different temperatures using different electric vehicle drive cycles. The performance of the ELM-GSA model is verified with two popular neural network methods: back-propagation neural network (BPNN) and radial basis function neural network (RBFNN). The results are evaluated using different error rates and computation costs. The results demonstrate that the ELM-based GSA model offers a higher accuracy and lower SOC error rate than those of BPNN-based GSA and RBFNN-based GSA models. Furthermore, a detailed comparative study between the proposed model and existing SOC strategies is conducted, which also demonstrates the superiority of the proposed model.
引用
收藏
页码:4225 / 4234
页数:10
相关论文
共 50 条
  • [31] State-of-Charge Estimation of Lithium-ion Battery Based on a Novel Reduced Order Electrochemical Model
    Yuan Chaochun, b
    Wang Bingjian
    Zhang Houzhong
    Long Chen
    Li Huanhuan
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2018, 13 (01): : 1131 - 1146
  • [32] State-of-Charge Estimation of Lithium-Ion Battery Based on an Improved Dual-Polarization Model
    Xie, Shuyu
    Zhang, Xinhui
    Bai, Wenyuan
    Guo, Aiyu
    Li, Wenlong
    Wang, Rui
    ENERGY TECHNOLOGY, 2023, 11 (04)
  • [33] An Improved Gated Recurrent Unit Network Model for State-of-Charge Estimation of Lithium-Ion Battery
    Duan, Wenxian
    Song, Chuanxue
    Peng, Silun
    Xiao, Feng
    Shao, Yulong
    Song, Shixin
    ENERGIES, 2020, 13 (23)
  • [34] A review of machine learning state-of-charge and state-of-health estimation algorithms for lithium-ion batteries
    Ren, Zhong
    Du, Changqing
    ENERGY REPORTS, 2023, 9 : 2993 - 3021
  • [35] An unscented kalman filtering method for estimation of state-of-charge of lithium-ion battery
    Guo, Jishu
    Liu, Shulin
    Zhu, Rui
    FRONTIERS IN ENERGY RESEARCH, 2023, 10
  • [36] State of health estimation for lithium-ion battery based on particle swarm optimization algorithm and extreme learning machine
    Chen, Kui
    Li, Jiali
    Liu, Kai
    Bai, Changshan
    Zhu, Jiamin
    Gao, Guoqiang
    Wu, Guangning
    Laghrouche, Salah
    GREEN ENERGY AND INTELLIGENT TRANSPORTATION, 2024, 3 (01):
  • [37] Temperature characterization based state-of-charge estimation for pouch lithium-ion battery
    Li, Xining
    Xiao, Lizhong
    Geng, Guangchao
    Jiang, Quanyuan
    JOURNAL OF POWER SOURCES, 2022, 535
  • [38] Temperature characterization based state-of-charge estimation for pouch lithium-ion battery
    Li, Xining
    Xiao, Lizhong
    Geng, Guangchao
    Jiang, Quanyuan
    JOURNAL OF POWER SOURCES, 2022, 535
  • [39] Robustness estimation for state-of-charge of a lithium-ion battery based on feature fusion
    Xia, Baozhou
    Ye, Min
    Wang, Qiao
    Lian, Gaoqi
    Li, Yan
    Zhang, Binrui
    Zhang, Yong
    ENERGY REPORTS, 2024, 12 : 4016 - 4025
  • [40] State-of-Charge Estimation of Lithium-ion Battery Based on an Improved Kalman Filter
    Fang, Hao
    Zhang, Yue
    Liu, Min
    Shen, Weiming
    2017 IEEE 21ST INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN (CSCWD), 2017, : 515 - 520