An explicit prime geodesic theorem for discrete tori and the hypergeometric functions

被引:1
|
作者
Yamasaki, Yoshinori [1 ]
机构
[1] Ehime Univ, Grad Sch Sci & Engn, Bunkyo Cho, Matsuyama, Ehime 7908577, Japan
关键词
Discrete tori; Prime geodesic theorem; Heat kernels on graphs; Lauricella hypergeometric functions; Jacobi polynomials; HEAT KERNELS; CLOSED GEODESICS; HOMOLOGY CLASSES; ZETA-FUNCTIONS;
D O I
10.1007/s00209-017-1955-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The discrete tori are graph analogues of the real tori, which are defined by the Cayley graphs of a finite product of finite cyclic groups. In this paper, using the theory of the heat kernel on the discrete tori established by Chinta, Jorgenson and Karlsson, we derive an explicit prime geodesic theorem for the discrete tori, which is not an asymptotic formula. To describe the formula, we need generalizations of the classical Jacobi polynomials, which are defined by the Lauricella multivariable hypergeometric function of type C.
引用
收藏
页码:361 / 376
页数:16
相关论文
共 50 条
  • [31] Dougall's theorem on hypergeometric functions
    Preece, CT
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1923, 21 : 595 - 598
  • [32] A prime geodesic theorem for SL3(Z)
    Deitmar, Anton
    Spilioti, Polyxeni
    Gon, Yasuro
    FORUM MATHEMATICUM, 2019, 31 (05) : 1179 - 1201
  • [33] A Prime Geodesic Theorem of Gallagher Type for Riemann Surfaces
    Avdispahic, M.
    ANALYSIS MATHEMATICA, 2020, 46 (01) : 25 - 38
  • [34] A Prime Geodesic Theorem of Gallagher Type for Riemann Surfaces
    M. Avdispahić
    Analysis Mathematica, 2020, 46 : 25 - 38
  • [35] On the prime geodesic theorem for hyperbolic 3-manifolds
    Avdispahic, Muharem
    MATHEMATISCHE NACHRICHTEN, 2018, 291 (14-15) : 2160 - 2167
  • [36] Recurrence relations for discrete hypergeometric functions
    Alvarez-Nodarse, R
    Cardoso, JL
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2005, 11 (09) : 829 - 850
  • [37] A discrete approach to the prime number theorem
    Trigiante, G
    Trigiante, D
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2002, 8 (01) : 93 - 100
  • [38] THE DUALITY THEOREM FOR GENERAL HYPERGEOMETRIC-FUNCTIONS
    GELFAND, IM
    GRAEV, MI
    DOKLADY AKADEMII NAUK SSSR, 1986, 289 (01): : 19 - 23
  • [39] A PRIME GEODESIC THEOREM FOR HIGHER RANK II: SINGULAR GEODESICS
    Deitmar, Anton
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2009, 39 (02) : 485 - 507
  • [40] PRIME GEODESIC THEOREM IN THE 3-DIMENSIONAL HYPERBOLIC SPACE
    Balkanova, Olga
    Chatzakos, Dimitrios
    Cherubini, Giacomo
    Frolenkov, Dmitry
    Laaksonen, Niko
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (08) : 5355 - 5374