Ship steering control system optimisation using genetic algorithms

被引:85
|
作者
McGookin, EW [1 ]
Murray-Smith, DJ
Li, Y
Fossen, TI
机构
[1] Univ Glasgow, Ctr Syst & Control, Glasgow G12 8LT, Lanark, Scotland
[2] Univ Glasgow, Dept Elect & Elect Engn, Glasgow G12 8LT, Lanark, Scotland
[3] Norwegian Univ Sci & Technol, Dept Engn Cybernet, N-7034 Trondheim, Norway
基金
英国工程与自然科学研究理事会;
关键词
ship control; sliding mode control; genetic algorithms; optimisation problems;
D O I
10.1016/S0967-0661(99)00159-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The optimisation of non-linear control systems by genetic algorithm is studied in this paper. It involves the performance of two systems for regulating the motion of a ship model. These systems allow Course Changing and Track Keeping through the implementation of a sliding mode controller. The genetic algorithm is used to optimise the performance of the complete system under various operating conditions by optimising the parameters of the sliding mode controller. The type of vessel considered is an oil tanker. (C) 2000 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:429 / 443
页数:15
相关论文
共 50 条
  • [41] The optimization of a tanker autopilot control system using genetic algorithms
    McGookin, EW
    Murray-Smith, DJ
    Li, Y
    Fossen, TI
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2000, 22 (02) : 141 - 178
  • [42] PID control using presearched genetic algorithms for a MIMO system
    Juang, Jih-Gau
    Huang, Ming-Te
    Liu, Wen-Kai
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 2008, 38 (05): : 716 - 727
  • [43] STUDY ON FUZZY SELF-LEARNING CONTROL SYSTEM FOR SHIP STEERING
    Liu Qing
    Wu Xiu-heng
    Zou Zao-jian
    JOURNAL OF HYDRODYNAMICS, 2004, 16 (04) : 431 - 435
  • [44] Deep Reinforcement Learning Algorithms for Steering an Underactuated Ship
    Le Pham Tuyen
    Layek, Abu
    Ngo Anh Vien
    Chung, TaeChoong
    2017 IEEE INTERNATIONAL CONFERENCE ON MULTISENSOR FUSION AND INTEGRATION FOR INTELLIGENT SYSTEMS (MFI), 2017, : 602 - 607
  • [45] The quality of optimisation by genetic algorithms
    Wehrens, R
    Pretsch, E
    Buydens, LMC
    ANALYTICA CHIMICA ACTA, 1999, 388 (03) : 265 - 271
  • [46] Genetic algorithms for modelling and optimisation
    McCall, J
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 184 (01) : 205 - 222
  • [47] STUDY ON FUZZY SELF-LEARNING CONTROL SYSTEM FOR SHIP STEERING
    LIU Qing School of Automation
    Journal of Hydrodynamics(SerB)., 2004, (04) : 431 - 435
  • [48] Genetic algorithms in Stochastic optimisation
    Sanabria, LA
    Soh, B
    Dillon, TS
    Chang, L
    CEC: 2003 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-4, PROCEEDINGS, 2003, : 815 - 822
  • [49] Hybrid intelligent control for ship steering
    Guo, C
    Yang, GX
    Simaan, MA
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2003, 9 (04): : 245 - 258
  • [50] Optimisation of reverse osmosis based wastewater treatment system for the removal of chlorophenol using genetic algorithms
    Al-Obaidi, M. A.
    Li, J-P.
    Kara-Zaitri, C.
    Mujtaba, I. M.
    CHEMICAL ENGINEERING JOURNAL, 2017, 316 : 91 - 100