The number of the non-full-rank Steiner triple systems

被引:5
|
作者
Shi, Minjia [1 ]
Xu, Li [1 ]
Krotov, Denis S. [2 ]
机构
[1] Anhui Univ, Sch Math, Minist Educ, Key Lab Intelligent Comp & Signal Proc, Hefei, Anhui, Peoples R China
[2] Sobolev Inst Math, Pr Akad Koptyuga 4, Novosibirsk 630090, Russia
基金
中国国家自然科学基金;
关键词
2-rank; 3-rank; Steiner triple system; S(2 (M)-1; ORDER-19; M+2;
D O I
10.1002/jcd.21663
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The p-rank of a Steiner triple system (STS) B is the dimension of the linear span of the set of characteristic vectors of blocks of B, over GF(p). We derive a formula for the number of different STSs of order v and given 2-rank r2, r2<v, and a formula for the number of STSs of order v and given 3-rank r3, r3<v-1. Also, we prove that there are no STSs of 2-rank smaller than v and, at the same time, 3-rank smaller than v-1. Our results extend previous study on enumerating STSs according to the rank of their codes, mainly by Tonchev, V.A. Zinoviev, and D.V. Zinoviev for the binary case and by Jungnickel and Tonchev for the ternary case.
引用
收藏
页码:571 / 585
页数:15
相关论文
共 50 条
  • [31] There are 1239 Steiner Triple Systems STS(31) of 2-rank 27
    Octavio Páez Osuna
    Designs, Codes and Cryptography, 2006, 40 : 187 - 190
  • [32] The classification of Steiner triple systems on 27 points with 3-rank 24
    Jungnickel, Dieter
    Magliveras, Spyros S.
    Tonchev, Vladimir D.
    Wassermann, Alfred
    DESIGNS CODES AND CRYPTOGRAPHY, 2019, 87 (04) : 831 - 839
  • [33] The classification of Steiner triple systems on 27 points with 3-rank 24
    Dieter Jungnickel
    Spyros S. Magliveras
    Vladimir D. Tonchev
    Alfred Wassermann
    Designs, Codes and Cryptography, 2019, 87 : 831 - 839
  • [34] There are 1239 Steiner triple systems STS(31) of 2-rank 27
    Paez Osuna, Octavio
    DESIGNS CODES AND CRYPTOGRAPHY, 2006, 40 (02) : 187 - 190
  • [35] Low-Complexity and Piecewise Systematic Encoding of Non-Full-Rank QC-LDPC Codes
    Tseng, Chien-Fu
    Tarng, Jenn-Hwan
    IEEE COMMUNICATIONS LETTERS, 2015, 19 (06) : 897 - 900
  • [36] Embedding Steiner triple systems in hexagon triple systems
    Lindner, C. C.
    Quattrocchi, Gaetano
    Rodger, C. A.
    DISCRETE MATHEMATICS, 2009, 309 (02) : 487 - 490
  • [37] STEINER TRIPLE SYSTEMS NON-ENGENDERED BY ALL THEIR TRIANGLES
    DOYEN, J
    MATHEMATISCHE ZEITSCHRIFT, 1970, 118 (03) : 197 - &
  • [38] Enumerating Steiner triple systems
    Heinlein, Daniel
    Ostergard, Patric R. J.
    JOURNAL OF COMBINATORIAL DESIGNS, 2023, 31 (10) : 479 - 495
  • [39] On colourings of Steiner triple systems
    Forbes, AD
    Grannell, MJ
    Griggs, TS
    DISCRETE MATHEMATICS, 2003, 261 (1-3) : 255 - 276
  • [40] Twin Steiner triple systems
    Grannell, MJ
    Griggs, TS
    Murphy, JP
    DISCRETE MATHEMATICS, 1997, 167 : 341 - 352