Current Value of Biparametric Prostate MRI with Machine-Learning or Deep-Learning in the Detection, Grading, and Characterization of Prostate Cancer: A Systematic Review

被引:18
|
作者
Michaely, Henrik J. [1 ]
Aringhieri, Giacomo [2 ,3 ]
Cioni, Dania [2 ,3 ]
Neri, Emanuele [2 ,3 ]
机构
[1] Heidelberg Univ, Med Fac Mannheim, D-69120 Heidelberg, Germany
[2] Univ Pisa, Acad Radiol, Dept Translat Res, I-56126 Pisa, Italy
[3] SIRM Fdn, Italian Soc Med & Intervent Radiol, Via Signora 2, I-20122 Milan, Italy
关键词
prostate cancer; multiparametric prostate MRI; biparametric prostate MRI; deep-learning; radiomics; artificial intelligence; cancer detection; PIRADS; MULTI-PARAMETRIC MRI; MULTIPARAMETRIC MRI; DIAGNOSTIC-ACCURACY; CLINICALLY SIGNIFICANT; GADOLINIUM DEPOSITION; RADIOMICS SIGNATURE; BIOPSY; DISEASE; IMAGES;
D O I
10.3390/diagnostics12040799
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Prostate cancer detection with magnetic resonance imaging is based on a standardized MRI-protocol according to the PI-RADS guidelines including morphologic imaging, diffusion weighted imaging, and perfusion. To facilitate data acquisition and analysis the contrast-enhanced perfusion is often omitted resulting in a biparametric prostate MRI protocol. The intention of this review is to analyze the current value of biparametric prostate MRI in combination with methods of machine-learning and deep learning in the detection, grading, and characterization of prostate cancer; if available a direct comparison with human radiologist performance was performed. PubMed was systematically queried and 29 appropriate studies were identified and retrieved. The data show that detection of clinically significant prostate cancer and differentiation of prostate cancer from non-cancerous tissue using machine-learning and deep learning is feasible with promising results. Some techniques of machine-learning and deep-learning currently seem to be equally good as human radiologists in terms of classification of single lesion according to the PIRADS score.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Automated Classification of Significant Prostate Cancer on MRI: A Systematic Review on the Performance of Machine Learning Applications
    Castillo T., Jose M.
    Arif, Muhammad
    Niessen, Wiro J.
    Schoots, Ivo G.
    Veenland, Jifke F.
    CANCERS, 2020, 12 (06) : 1 - 13
  • [22] A systematic literature review for the prediction of anticancer drug response using various machine-learning and deep-learning techniques
    Singh, Davinder Paul
    Kaushik, Baijnath
    CHEMICAL BIOLOGY & DRUG DESIGN, 2023, 101 (01) : 175 - 194
  • [23] Deep-Learning Models for Detection and Localization of Visible Clinically Significant Prostate Cancer on Multi-Parametric MRI
    Sun, Zhaonan
    Wu, Pengsheng
    Cui, Yingpu
    Liu, Xiang
    Wang, Kexin
    Gao, Ge
    Wang, Huihui
    Zhang, Xiaodong
    Wang, Xiaoying
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2023, 58 (04) : 1067 - 1081
  • [24] Automated Gleason grading of prostate cancer using transfer learning from general-purpose deep-learning networks
    Serbanescu, Mircea-Sebastian
    Manea, Nicolae Catalin
    Streba, Liliana
    Belciug, Smaranda
    Plesea, Iancu Emil
    Pirici, Ionica
    Bungardean, Raluca Maria
    Plesea, Razvan Mihail
    ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY, 2020, 61 (01): : 149 - 155
  • [25] Deep-Learning Detection of Cancer Metastases to the Brain on MRI
    Zhang, Min
    Young, Geoffrey S.
    Chen, Huai
    Li, Jing
    Qin, Lei
    McFaline-Figueroa, J. Ricardo
    Reardon, David A.
    Cao, Xinhua
    Wu, Xian
    Xu, Xiaoyin
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2020, 52 (04) : 1227 - 1236
  • [26] Machine and Deep Learning Prediction Of Prostate Cancer Aggressiveness Using Multiparametric MRI
    Bertelli, Elena
    Mercatelli, Laura
    Marzi, Chiara
    Pachetti, Eva
    Baccini, Michela
    Barucci, Andrea
    Colantonio, Sara
    Gherardini, Luca
    Lattavo, Lorenzo
    Pascali, Maria Antonietta
    Agostini, Simone
    Miele, Vittorio
    FRONTIERS IN ONCOLOGY, 2022, 11
  • [27] Prostate Cancer Risk Stratification in Men With a Clinical Suspicion of Prostate Cancer Using a Unique Biparametric MRI and Expression of 11 Genes in Apparently Benign Tissue: Evaluation Using Machine-Learning Techniques
    Perez, Ileana Montoya
    Jambor, Ivan
    Pahikkala, Tapio
    Airola, Antti
    Merisaari, Harri
    Saunavaara, Jani
    Alinezhad, Saeid
    Vaananen, Riina-Minna
    Tallgren, Terhi
    Verho, Janne
    Kiviniemi, Aida
    Ettala, Otto
    Knaapila, Juha
    Syvanen, Kari T.
    Kallajoki, Markku
    Vainio, Paula
    Aronen, Hannu J.
    Pettersson, Kim
    Bostrom, Peter J.
    Taimen, Pekka
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2020, 51 (05) : 1540 - 1553
  • [28] Diagnostic value of biparametric MRI as an adjunct to PSA-based detection of prostate cancer
    Rais-Bahrami, Soroush
    Siddiqui, Minhaj
    Vourganti, Srinivas
    Turkbey, Baris
    Rastinehad, Ardeshir
    Stamatakis, Lambros
    Truong, Hong
    Walton-Diaz, Annerleim
    Hoang, Anthony N.
    Nix, Jeffrey
    Merino, Maria
    Wood, Bradford J.
    Simon, Richard
    Choyke, Peter L.
    Pinto, Peter A.
    JOURNAL OF CLINICAL ONCOLOGY, 2014, 32 (04)
  • [29] Evaluating deep learning and radiologist performance in volumetric prostate cancer analysis with biparametric MRI and histopathologically mapped slides
    Yilmaz, Enis C.
    Harmon, Stephanie A.
    Lis, Rosina T.
    Esengur, Omer Tarik
    Gelikman, David G.
    Garmendia-Cedillos, Marcial
    Merino, Maria J.
    Wood, Bradford J.
    Patel, Krishnan
    Citrin, Deborah E.
    Gurram, Sandeep
    Choyke, Peter L.
    Pinto, Peter A.
    Turkbey, Baris
    ABDOMINAL RADIOLOGY, 2024,
  • [30] Machine-Learning Models for Multicenter Prostate Cancer Treatment Plans
    Syed, Khajamoinuddin
    Sleeman, William
    Soni, Payal
    Hagan, Michael
    Palta, Jatinder
    Kapoor, Rishabh
    Ghosh, Preetam
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2021, 28 (02) : 166 - 184