Current Value of Biparametric Prostate MRI with Machine-Learning or Deep-Learning in the Detection, Grading, and Characterization of Prostate Cancer: A Systematic Review

被引:18
|
作者
Michaely, Henrik J. [1 ]
Aringhieri, Giacomo [2 ,3 ]
Cioni, Dania [2 ,3 ]
Neri, Emanuele [2 ,3 ]
机构
[1] Heidelberg Univ, Med Fac Mannheim, D-69120 Heidelberg, Germany
[2] Univ Pisa, Acad Radiol, Dept Translat Res, I-56126 Pisa, Italy
[3] SIRM Fdn, Italian Soc Med & Intervent Radiol, Via Signora 2, I-20122 Milan, Italy
关键词
prostate cancer; multiparametric prostate MRI; biparametric prostate MRI; deep-learning; radiomics; artificial intelligence; cancer detection; PIRADS; MULTI-PARAMETRIC MRI; MULTIPARAMETRIC MRI; DIAGNOSTIC-ACCURACY; CLINICALLY SIGNIFICANT; GADOLINIUM DEPOSITION; RADIOMICS SIGNATURE; BIOPSY; DISEASE; IMAGES;
D O I
10.3390/diagnostics12040799
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Prostate cancer detection with magnetic resonance imaging is based on a standardized MRI-protocol according to the PI-RADS guidelines including morphologic imaging, diffusion weighted imaging, and perfusion. To facilitate data acquisition and analysis the contrast-enhanced perfusion is often omitted resulting in a biparametric prostate MRI protocol. The intention of this review is to analyze the current value of biparametric prostate MRI in combination with methods of machine-learning and deep learning in the detection, grading, and characterization of prostate cancer; if available a direct comparison with human radiologist performance was performed. PubMed was systematically queried and 29 appropriate studies were identified and retrieved. The data show that detection of clinically significant prostate cancer and differentiation of prostate cancer from non-cancerous tissue using machine-learning and deep learning is feasible with promising results. Some techniques of machine-learning and deep-learning currently seem to be equally good as human radiologists in terms of classification of single lesion according to the PIRADS score.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Deep learning-based artificial intelligence for prostate cancer detection at biparametric MRI
    Mehralivand, Sherif
    Yang, Dong
    Harmon, Stephanie A.
    Xu, Daguang
    Xu, Ziyue
    Roth, Holger
    Masoudi, Samira
    Kesani, Deepak
    Lay, Nathan
    Merino, Maria J.
    Wood, Bradford J.
    Pinto, Peter A.
    Choyke, Peter L.
    Turkbey, Baris
    ABDOMINAL RADIOLOGY, 2022, 47 (04) : 1425 - 1434
  • [2] Deep learning-based artificial intelligence for prostate cancer detection at biparametric MRI
    Sherif Mehralivand
    Dong Yang
    Stephanie A. Harmon
    Daguang Xu
    Ziyue Xu
    Holger Roth
    Samira Masoudi
    Deepak Kesani
    Nathan Lay
    Maria J. Merino
    Bradford J. Wood
    Peter A. Pinto
    Peter L. Choyke
    Baris Turkbey
    Abdominal Radiology, 2022, 47 : 1425 - 1434
  • [3] FastMRI Prostate: A public, biparametric MRI dataset to advance machine learning for prostate cancer imaging
    Tibrewala, Radhika
    Dutt, Tarun
    Tong, Angela
    Ginocchio, Luke
    Lattanzi, Riccardo
    Keerthivasan, Mahesh B.
    Baete, Steven H.
    Chopra, Sumit
    Lui, Yvonne W.
    Sodickson, Daniel K.
    Chandarana, Hersh
    Johnson, Patricia M.
    SCIENTIFIC DATA, 2024, 11 (01)
  • [4] Deep-learning approaches for Gleason grading of prostate biopsies
    Madabhushi, Anant
    Feldman, Michael D.
    Leo, Patrick
    LANCET ONCOLOGY, 2020, 21 (02): : 187 - 189
  • [5] Deep Learning Regression for Prostate Cancer Detection and Grading in Bi-Parametric MRI
    Vente, Coen de
    Vos, Pieter
    Hosseinzadeh, Matin
    Pluim, Josien
    Veta, Mitko
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2021, 68 (02) : 374 - 383
  • [6] Hybrid Optimization Enabled Deep-Learning for Prostate Cancer Detection
    Reddy, Siva Kumar
    Kathirvelu, Kalaivani
    SENSING AND IMAGING, 2024, 25 (01):
  • [7] Machine Learning in Prostate MRI for Prostate Cancer: Current Status and Future Opportunities
    Li, Huanye
    Lee, Chau Hung
    Chia, David
    Lin, Zhiping
    Huang, Weimin
    Tan, Cher Heng
    DIAGNOSTICS, 2022, 12 (02)
  • [8] Evaluation of a Cascaded Deep Learning-based Algorithm for Prostate Lesion Detection at Biparametric MRI
    Lin, Yue
    Yilmaz, Enis C.
    Belue, Mason J.
    Harmon, Stephanie A.
    Tetreault, Jesse
    Phelps, Tim E.
    Merriman, Katie M.
    Hazen, Lindsey
    Garcia, Charisse
    Yang, Dong
    Xu, Ziyue
    Lay, Nathan S.
    Toubaji, Antoun
    Merino, Maria J.
    Xu, Daguang
    Law, Yan Mee
    Gurram, Sandeep
    Wood, Bradford J.
    Choyke, Peter L.
    Pinto, Peter A.
    Turkbey, Baris
    RADIOLOGY, 2024, 311 (02)
  • [9] Semisupervised Learning with Report-guided Pseudo Labels for Deep Learning-based Prostate Cancer Detection Using Biparametric MRI
    Bosma, Joeran S.
    Saha, Anindo
    Hosseinzadeh, Matin
    Slootweg, Ivan
    de Rooij, Maarten
    Huisman, Henkjan
    RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2023, 5 (05)
  • [10] A deep learning masked segmentation alternative to manual segmentation in biparametric MRI prostate cancer radiomics
    Bleker, Jeroen
    Kwee, Thomas C.
    Rouw, Dennis
    Roest, Christian
    Borstlap, Jaap
    de Jong, Igle Jan
    Dierckx, Rudi A. J. O.
    Huisman, Henkjan
    Yakar, Derya
    EUROPEAN RADIOLOGY, 2022, 32 (09) : 6526 - 6535