Distances on the moduli space of complex projective structures

被引:1
|
作者
Faraco, Gianluca [1 ]
机构
[1] Tata Inst Fundamental Res, Sch Math, Homi Bhabha Rd, Mumbai 400005, Maharashtra, India
关键词
Complex projective structures; Hermitian structures; Kobayashi and Caratheodory distances; Bergman distance; CARATHEODORYS METRICS; RIEMANN SURFACES; REGULARITY;
D O I
10.1016/j.exmath.2019.04.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S be a closed and oriented surface of genus g at least 2. In this (mostly expository) article, the object of study is the space P(S) of marked isomorphism classes of projective structures on S. We show that P(S), endowed with the canonical complex structure, carries exotic hermitian structures that extend the classical ones on the Teichmuller space T(S) of S. We shall notice also that the Kobayashi and Caratheodory pseudodistances, which can be defined for any complex manifold, cannot be upgraded to a distance. We finally show that P(S) does not carry any Bergman pseudometric. (C) 2019 Elsevier GmbH. All rights reserved.
引用
收藏
页码:407 / 429
页数:23
相关论文
共 50 条
  • [31] Moduli space of Fedosov structures
    Dubrovskiy, S
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2005, 27 (03) : 273 - 297
  • [32] MODULI SPACES OF MARKED BRANCHED PROJECTIVE STRUCTURES ON SURFACES
    Billon, Gustave
    JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES, 2024, 11
  • [33] The BGG Complex on Projective Space
    Eastwood, Michael G.
    Gover, A. Rod
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2011, 7
  • [34] Quantization on the complex projective space
    Mondal, Bishwarup
    Dutta, Satyaki
    Heath, Robert W., Jr.
    DCC 2006: DATA COMPRESSION CONFERENCE, PROCEEDINGS, 2006, : 242 - +
  • [35] Circles in a complex projective space
    Adachi, T
    Maeda, S
    Udagawa, S
    OSAKA JOURNAL OF MATHEMATICS, 1995, 32 (03) : 709 - 719
  • [36] Moduli space of marked convex projective surface of finite volume
    Marquis, Ludovic
    GEOMETRY & TOPOLOGY, 2010, 14 (04) : 2103 - 2149
  • [37] THE MODULI SPACE OF MARKED GENERALIZED CUSPS IN REAL PROJECTIVE MANIFOLDS
    Ballas, Samuel A.
    Cooper, Daryl
    Leitner, Arielle
    CONFORMAL GEOMETRY AND DYNAMICS, 2022, 26 : 111 - 164
  • [38] MODULI SPACES OF RANK 2 INSTANTON SHEAVES ON THE PROJECTIVE SPACE
    Jardim, Marcos
    Maican, Mario
    Tikhomirov, Alexander S.
    PACIFIC JOURNAL OF MATHEMATICS, 2017, 291 (02) : 399 - 424
  • [39] New moduli components of rank 2 bundles on projective space
    Almeida, C.
    Jardim, M.
    Tikhomirov, A. S.
    Tikhomirov, S. A.
    SBORNIK MATHEMATICS, 2021, 212 (11) : 1503 - 1552
  • [40] The moduli space of hyperbolic cone structures
    Zhou, Q
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1999, 51 (03) : 517 - 550