Broken holey graphene oxide for electrocatalytic N2-to-NH3 fixation at ambient condition

被引:21
|
作者
Wang, Fei [1 ]
Wang, Haoyu [2 ]
Mao, Jian [1 ]
机构
[1] Sichuan Univ, Coll Mat Sci & Engn, 24 South Sect 1,Yihuan Rd, Chengdu 610065, Peoples R China
[2] Univ New South Wales, Sch Mat Sci & Engn, Sydney, NSW 2052, Australia
关键词
Metal-free catalyst; Broken holey graphene oxide; Electrocatalysis; Nitrogen reduction reaction; Density functional theory; AMMONIA-SYNTHESIS; NITROGEN REDUCTION; DOPED GRAPHENE; N-2; EFFICIENT; PERFORMANCE; CARBON; CATALYSTS; NH3;
D O I
10.1016/j.colsurfa.2020.125345
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrocatalysts is critical for nitrogen reduction reaction (NRR) under ambient conditions. Defect engineering is generally employed to prepared high-performance electrocatalysts. Herein, we report a broken holey graphene oxide (BHGO) prepared by a facile high-temperature etching method. Compared with the holey graphene oxide (HGO) and graphene oxide (GO), the BHGO exhibits higher electron transfer capability and richer active sites (coordination of one-dimensional edges and zero-dimensional oxygen-doping defects). The BHGO catalyst reaches excellent NRR performance (NH3 yield of 22.27 mu g h(-1) mg(-1) and Faraday efficiency (FE) of 11.01 % in 0.1 M Na2SO4 solution at the ambient condition. Illustrated by the density functional theory (DFT) calculations, the introduction of coordinated mull-dimensional defects redistributes the charge, enhancing adsorption of nitrogen (N-2) and reducing energy barrier at rate-determining step (N*-> NH*). Moreover, catalytic performance can be well preserved in an aqueous solution. The proposed mull-dimensional defect engineering strategy and established DFT simulations may pave an exciting avenue toward the design and development of high-performance catalysts.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Ambient electrocatalytic N2 reduction to NH3 by metal fluorides
    Li, Peipei
    Liu, Zaichun
    Wu, Tongwei
    Zhang, Ya
    Wang, Linyu
    Wang, Li
    Ji, Lei
    Zhang, Youyu
    Luo, Yonglan
    Wang, Ting
    Liu, Shanhu
    Wu, Yuping
    Liu, Meiling
    Sun, Xuping
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (30) : 17761 - 17765
  • [32] FeNi@CNS nanocomposite as an efficient electrochemical catalyst for N2-to-NH3 conversion under ambient conditions
    Tayiba Ilyas
    Fazal Raziq
    Nasir Ilyas
    Liuxin Yang
    Sharafat Ali
    Amir Zada
    Syedul Hasnain Bakhtiar
    Yong Wang
    Huahai Shen
    Liang Qiao
    Journal of Materials Science & Technology, 2022, 103 (08) : 59 - 66
  • [33] A MoS2 nanosheet-reduced graphene oxide hybrid: an efficient electrocatalyst for electrocatalytic N2 reduction to NH3 under ambient conditions
    Li, Xianghong
    Ren, Xiang
    Liu, Xuejing
    Zhao, Jinxiu
    Sun, Xu
    Zhang, Yong
    Kuang, Xuan
    Yan, Tao
    Wei, Qin
    Wu, Dan
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (06) : 2524 - 2528
  • [34] Enabling the electrocatalytic fixation of N2 to NH3 by C-doped TiO2 nanoparticles under ambient conditions
    Jia, Kun
    Wang, Yuan
    Pan, Qi
    Zhong, Benhe
    Luo, Yonglan
    Cui, Guanwei
    Guo, Xiaodong
    Sun, Xuping
    NANOSCALE ADVANCES, 2019, 1 (03): : 961 - 964
  • [35] MoO3 nanosheets for efficient electrocatalytic N2 fixation to NH3
    Han, Jingrui
    Ji, Xuqiang
    Ren, Xiang
    Cui, Guanwei
    Li, Lei
    Xie, Fengyu
    Wang, Hui
    Li, Baihai
    Sun, Xuping
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (27) : 12974 - 12977
  • [36] Key Role of Local Chemistry in Lattice Nitrogen-Participated N2-to-NH3 Electrocatalytic Cycle over Nitrides
    Zhang, Mingcheng
    Ai, Xuan
    Liang, Xiao
    Chen, Hui
    Zou, Xiaoxin
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (42)
  • [37] MoS2 Nanodots Anchored on Reduced Graphene Oxide for Efficient N2 Fixation to NH3
    Liu, Yanyan
    Wang, Weikang
    Zhang, Shengbo
    Li, Wenyi
    Wang, Guozhong
    Zhang, Yunxia
    Han, Miaomiao
    Zhang, Haimin
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (05): : 2320 - 2326
  • [38] La2O3 nanoplate: An efficient electrocatalyst for artificial N2 fixation to NH3 with excellent selectivity at ambient condition
    Xu, Bo
    Liu, Zaichun
    Qiu, Weibin
    Liu, Qian
    Sun, Xuping
    Cui, Guanwei
    Wu, Yuping
    Xiong, Xiaoli
    ELECTROCHIMICA ACTA, 2019, 298 : 106 - 111
  • [39] Mn3O4 nanoparticles@reduced graphene oxide composite: An efficient electrocatalyst for artificial N2 fixation to NH3 at ambient conditions
    Huang, Hong
    Gong, Feng
    Wang, Yuan
    Wang, Huanbo
    Wu, Xiufeng
    Lu, Wenbo
    Zhao, Runbo
    Chen, Hongyu
    Shi, Xifeng
    Asiri, Abdullah M.
    Li, Tingshuai
    Liu, Qian
    Sun, Xuping
    NANO RESEARCH, 2019, 12 (05) : 1093 - 1098
  • [40] NH2-MIL-88B-Fe for electrocatalytic N2 fixation to NH3 with high Faradaic efficiency under ambient conditions in neutral electrolyte
    Yi, Xuerui
    He, Xiaobo
    Yin, Fengxiang
    Yang, Tong
    Chen, Biaohua
    Li, Guoru
    JOURNAL OF MATERIALS SCIENCE, 2020, 55 (26) : 12041 - 12052