Lattice-strain effect on oxygen vacancy formation in gadolinium-doped ceria

被引:32
|
作者
Ahn, Kiyong [1 ]
Chung, Yong-Chae [2 ]
Yoon, Kyung Joong [1 ]
Son, Ji-Won [1 ]
Kim, Byung-Kook [1 ]
Lee, Hae-Weon [1 ]
Lee, Jong-Ho [1 ]
机构
[1] Korea Inst Sci & Technol, High Temp Energy Mat Res Ctr, Seoul 136791, South Korea
[2] Hanyang Univ, Dept Mat Sci & Engn, Seoul 133791, South Korea
关键词
Strain; GDC; Ionic conductivity; Vacancy; Density functional theory; YTTRIA-STABILIZED ZIRCONIA; IONIC-CONDUCTIVITY; ELECTRICAL-PROPERTIES; ELECTROCHEMICAL PROPERTIES; FILMS; OXIDE; CEO2; 1ST-PRINCIPLES; ELECTROLYTES; SIMULATION;
D O I
10.1007/s10832-013-9844-6
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
By first-principles calculations using the projector-augmented-wave (PAW) method, the oxygen vacancy formation energy of gadolinium-doped ceria (GDC) is calculated as a function of lattice strain comprising the range from compressive (-1.5 %) to dilative (1.5 %) strain. Employing the generalized gradient approximation (GGA) for the exchange correlation potential and including the strong on-site Coulombic repulsion U, the calculations are performed within the (GGA) + U formalism. For simplicity of interpretation, all calculations are carried out based on the assumption that structural relaxation in GDC occurred under isotropic strain states. According to the calculation of the energetics of vacancy formation, the formation energy shows the lowest value at dilative strain conditions, where the lattice structure is in the loosest state. Furthermore, the generated oxygen vacancy has a preferred migration path that is mainly controlled by the neighboring cation configuration.
引用
收藏
页码:72 / 77
页数:6
相关论文
共 50 条
  • [21] Study on agglomeration and densification behaviors of gadolinium-doped ceria ceramics
    Luo Dan
    Luo Zhongyang
    Yu Chunjiang
    Cen Kefa
    JOURNAL OF RARE EARTHS, 2007, 25 (02) : 163 - 167
  • [22] Synthesis of Gadolinium-Doped Ceria Powders by Electrolysis of Aqueous Solutions
    Hirata, Yoshihiro
    Matsunaga, Naoki
    Murao, Masaru
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2009, 92 (01) : S11 - S15
  • [23] Interface segregation of iron sintering aid in gadolinium-doped ceria
    Machado, Marina
    da Silva, Andre L.
    Moraes, Leticia P. R.
    Rodrigues, Lays N.
    Caliman, Lorena B.
    Gouvea, Douglas
    Fonseca, Fabio C.
    CRYSTENGCOMM, 2023, 25 (43) : 6102 - 6110
  • [24] Aqueous tape casting and crystallization behavior of gadolinium-doped ceria
    Fu, Yen-Pei
    Liu, Yen-Chun
    Hu, Shao-Hua
    CERAMICS INTERNATIONAL, 2009, 35 (08) : 3153 - 3159
  • [25] Preparation by different methods and analytical characterization of gadolinium-doped ceria
    Aleksej Zarkov
    Lina Mikoliunaite
    Arturas Katelnikovas
    Stasys Tautkus
    Aivaras Kareiva
    Chemical Papers, 2018, 72 : 129 - 138
  • [26] Electrodeposition of Supported Gadolinium-Doped Ceria Solid Solution Nanowires
    Bocchetta, Patrizia
    Santamaria, Monica
    Di Quarto, Francesco
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (05) : E108 - E114
  • [27] Electronic structure of gadolinium-doped ceria system: A DFT study
    Wang, Jianfeng
    MODERN PHYSICS LETTERS B, 2019, 33 (08):
  • [28] Gadolinium-doped ceria ceramics with a submicron structure for electrochemical applications
    Gorelov, VP
    Zayats, SV
    Ivanov, VV
    Ivin, SY
    Kotov, YA
    Medvedev, AI
    Moskalenko, NI
    Murzakaev, AM
    Samatov, OM
    Khrustov, VR
    GLASS PHYSICS AND CHEMISTRY, 2005, 31 (04) : 471 - 476
  • [29] Preparation by different methods and analytical characterization of gadolinium-doped ceria
    Zarkov, Aleksej
    Mikoliunaite, Lina
    Katelnikovas, Arturas
    Tautkus, Stasys
    Kareiva, Aivaras
    CHEMICAL PAPERS, 2018, 72 (01) : 129 - 138
  • [30] Gadolinium-Doped Ceria Ceramics with a Submicron Structure for Electrochemical Applications
    V. P. Gorelov
    S. V. Zayats
    V. V. Ivanov
    S. Yu. Ivin
    Yu. A. Kotov
    A. I. Medvedev
    N. I. Moskalenko
    A. M. Murzakaev
    O. M. Samatov
    V. R. Khrustov
    Glass Physics and Chemistry, 2005, 31 : 471 - 476