Finite time Parisian ruin of an integrated Gaussian risk model

被引:1
|
作者
Peng, Xiaofan [1 ]
Luo, Li [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 610054, Peoples R China
[2] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
Integrated Gaussian process; Parisian ruin; Method of moments; Exact asymptotics; PROBABILITY;
D O I
10.1016/j.spl.2016.12.019
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we investigate the finite time Parisian ruin probability for an integrated Gaussian risk process. Under certain assumptions, we find that the Parisian ruin probability and the classical ruin probability are on the log-scale asymptotically the same. Moreover, if the time length required by the Parisian ruin tends to zero as the initial reserve goes to infinity, the Parisian ruin probability and the classical one are the same also in the precise asymptotic behavior. Furthermore, we derive an approximation for the scaled conditional ruin time. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:22 / 29
页数:8
相关论文
共 50 条
  • [1] The joint distribution of the Parisian ruin time and the number of claims until Parisian ruin in the classical risk model
    Czarn, Irmina
    Li, Yanhong
    Palmowski, Zbigniew
    Zhao, Chunming
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 313 : 499 - 514
  • [2] Parisian ruin over a finite-time horizon
    Krzysztof Dębicki
    Enkelejd Hashorva
    LanPeng Ji
    Science China Mathematics, 2016, 59 : 557 - 572
  • [3] Laplace Transformation of the Ruin Time for a Risk Model with a Parisian Implementation Delay
    Sun, Tao
    Zhang, Xinqiu
    MATHEMATICS, 2024, 12 (04)
  • [4] PARISIAN RUIN OF SELF-SIMILAR GAUSSIAN RISK PROCESSES
    Debicki, Krzysztof
    Hashorva, Enkelejd
    Ji, Lanpeng
    JOURNAL OF APPLIED PROBABILITY, 2015, 52 (03) : 688 - 702
  • [5] Parisian ruin over a finite-time horizon
    Debicki, Krzysztof
    Hashorva, Enkelejd
    Ji LanPeng
    SCIENCE CHINA-MATHEMATICS, 2016, 59 (03) : 557 - 572
  • [6] Parisian ruin over a finite-time horizon
    DEBICKI Krzysztof
    HASHORVA Enkelejd
    JI Lan Peng
    ScienceChina(Mathematics), 2016, 59 (03) : 557 - 572
  • [7] ON THE PARISIAN RUIN OF THE DUAL LEVY RISK MODEL
    Yang, Chen
    Sendova, Kristian P.
    Li, Zhong
    JOURNAL OF APPLIED PROBABILITY, 2017, 54 (04) : 1193 - 1212
  • [8] Cumulative Parisian ruin in finite and infinite time horizons for a renewal risk process with exponential claims
    Cheung, Eric C. K.
    Zhu, Wei
    INSURANCE MATHEMATICS & ECONOMICS, 2023, 111 : 84 - 101
  • [9] Parisian ruin in a discrete-time Markov-modulated dual risk model
    Kim, Bara
    Kim, Jeongsim
    Yoo, Hyunjoo
    COMPUTERS & INDUSTRIAL ENGINEERING, 2022, 169
  • [10] Parisian ruin for the dual risk process in discrete-time
    Palmowski Z.
    Ramsden L.
    Papaioannou A.D.
    European Actuarial Journal, 2018, 8 (1) : 197 - 214