Weighted energy decay for 3D Klein-Gordon equation

被引:16
|
作者
Komech, A. I. [1 ,2 ]
Kopylova, E. A. [2 ]
机构
[1] Univ Vienna, Fak Math, A-1010 Vienna, Austria
[2] Russian Acad Sci, Inst Informat Transmiss Problems, Moscow 101447, Russia
关键词
Dispersion; Klein-Gordon equation; Relativistic equations; Resolvent; Spectral representation; Weighted spaces; Continuous spectrum; Born series; Convolution; Long-time asymptotics; Asymptotic completeness; MULTICHANNEL NONLINEAR SCATTERING; SCHRODINGER-OPERATORS; ASYMPTOTIC STABILITY; SPECTRAL PROPERTIES; TIME-DECAY; EXPANSIONS; SOLITONS;
D O I
10.1016/j.jde.2009.06.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain a dispersive long-time decay in weighted energy norms for solutions of the 3D Klein-Gordon equation with generic potential. The decay extends the results obtained by Jensen and Kato for the 3D Schrodinger equation. For the proof we modify the spectral approach of Jensen and Kato to make it applicable to relativistic equations. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:501 / 520
页数:20
相关论文
共 50 条
  • [31] Energy scattering for a Klein-Gordon equation with a cubic convolution
    Miao, Changxing
    Zheng, Jiqiang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (06) : 2178 - 2224
  • [32] A search on the Klein-Gordon equation
    Gonul, B.
    CHINESE PHYSICS LETTERS, 2006, 23 (10) : 2640 - 2643
  • [33] Energy asymptotics for the strongly damped Klein-Gordon equation
    Mohamad, Haidar
    PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2022, 3 (06):
  • [34] ORDER OF ENERGY-LEVELS FOR THE KLEIN-GORDON EQUATION
    GROSSE, H
    MARTIN, A
    STUBBE, J
    PHYSICS LETTERS B, 1991, 255 (04) : 563 - 566
  • [35] On the 1D Coulomb Klein-Gordon equation
    Barton, G.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (05) : 1011 - 1031
  • [36] When is the energy of the 1D damped Klein-Gordon equation decaying?
    Satbir Malhi
    Milena Stanislavova
    Mathematische Annalen, 2018, 372 : 1459 - 1479
  • [37] The Klein-Gordon equation with the Kratzer potential in d dimensions
    Saad, Nasser
    Hall, Richard L.
    Ciftci, Hakan
    CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2008, 6 (03): : 717 - 729
  • [38] Comparison theorems for the Klein-Gordon equation in d dimensions
    Hall, Richard L.
    Aliyu, M. D.
    PHYSICAL REVIEW A, 2008, 78 (05):
  • [39] When is the energy of the 1D damped Klein-Gordon equation decaying?
    Malhi, Satbir
    Stanislavova, Milena
    MATHEMATISCHE ANNALEN, 2018, 372 (3-4) : 1459 - 1479
  • [40] The Klein-Gordon equation with a Coulomb potential in D dimensions
    Dong, SH
    Gu, XY
    Ma, ZQ
    Yu, J
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E, 2003, 12 (04): : 555 - 565