A narrow linewidth and frequency-stable probe laser source for the 88Sr+ single ion optical frequency standard

被引:48
|
作者
Dube, P. [1 ]
Madej, A. A. [1 ]
Bernard, J. E. [1 ]
Marmet, L. [1 ]
Shiner, A. D. [2 ]
机构
[1] Natl Res Council Canada, Inst Natl Measurement Stand, Ottawa, ON K1A 0R6, Canada
[2] Natl Res Council Canada, Steacie Inst Mol Sci, Ottawa, ON K1A 0R6, Canada
来源
APPLIED PHYSICS B-LASERS AND OPTICS | 2009年 / 95卷 / 01期
关键词
DIODE-LASER; STABILIZATION; CAVITY; PHASE; CLOCK; NOISE;
D O I
10.1007/s00340-009-3390-6
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, we describe in detail a narrow linewidth and frequency-stable laser source used to probe the 5s (2) S (1/2)-4d (2) D (5/2) clock transition of the Sr-88(+) optical frequency standard. The performance of the laser system is investigated with studies of its frequency drift rates and with high resolution spectra of the Sr-88(+) clock transition. The observed short-term drift rates are typically in the range of 10 to 23 mHz/s, and the current long-term drift rate is 13.9(3) mHz/s. The laser stability, after subtraction of linear drifts, reaches 5x10(-16) at an averaging time of 3000 s. This high level of stability is attributed for the most part to stabilization of the reference cavity at the temperature where the coefficient of linear thermal expansion crosses zero. An upper bound for the laser linewidth is given by the observation of a Fourier-transform limited resonance of 4.3 Hz (Delta nu/nu=1x10(-14)) on the Sr-88(+) clock transition. The effective averaging time during the linewidth measurements was about 100 s.
引用
收藏
页码:43 / 54
页数:12
相关论文
共 50 条
  • [41] Indium single-ion optical frequency standard
    Becker, T
    Eichenseer, M
    Nevsky, AY
    Peik, E
    Schwedes, C
    Skvortsov, MN
    von Zanthier, J
    Walther, H
    LASER FREQUENCY STABILIZATION, STANDARDS, MEASUREMENT AND APPLICATIONS, 2001, 4269 : 18 - 24
  • [42] PACKAGED FREQUENCY-STABLE TUNABLE 20 KHZ LINEWIDTH 1.5-MU-M INGAASP EXTERNAL CAVITY LASER
    MATTHEWS, MR
    CAMERON, KH
    WYATT, R
    DEVLIN, WJ
    ELECTRONICS LETTERS, 1985, 21 (03) : 113 - 115
  • [43] Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry
    Geng, JH
    Spiegelberg, C
    Jiang, SB
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2005, 17 (09) : 1827 - 1829
  • [44] Stable, narrow-linewidth laser system with a broad frequency tunability and a fast switching time
    Liu, C.
    Nickerson, K.
    Booth, D. W.
    Frechem, J.
    Tai, H.
    Miladi, H.
    Moore, K.
    Shaffer, J. P.
    OPTICS LETTERS, 2024, 49 (02) : 399 - 402
  • [45] Ultra-narrow linewidth, stable and tunable laser source for optical communication systems and spectroscopy
    Al-Taiy, H.
    Wenzel, N.
    Preussler, S.
    Klinger, J.
    Schneider, T.
    OPTICS LETTERS, 2014, 39 (20) : 5826 - 5829
  • [46] Optical frequency standard based upon single laser-cooled indium ion
    Nagourney, W
    Torgerson, J
    Dehmelt, H
    TRAPPED CHARGED PARTICLES AND FUNDAMENTALS PHYSICS, 1999, 457 : 343 - 347
  • [47] Butterfly Packaged Ultra-Narrow Linewidth Single Frequency Teardrop Laser Diode
    Yang, Hua
    Yang, Mingqi
    Zhao, Yan
    Zhang, Limeng
    Jia, Zhengkai
    Alexander, Justin
    Zhao, Lingjuan
    Hall, Douglas C.
    Peters, Frank H.
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2017, 29 (18) : 1537 - 1539
  • [48] Absolute frequency measurement of the 674-nm 88Sr+ clock transition using a femtosecond optical frequency comb -: art. no. 032501
    Margolis, HS
    Huang, G
    Barwood, GP
    Lea, SN
    Klein, HA
    Rowley, WRC
    Gill, P
    Windeler, RS
    PHYSICAL REVIEW A, 2003, 67 (03):
  • [49] Frequency Noise Characterization of a Widely Tunable Narrow-Linewidth DFB Laser Array Source
    Wilde, Jeffrey P.
    Yoffe, Gideon W.
    Kahn, Joseph M.
    OFC: 2009 CONFERENCE ON OPTICAL FIBER COMMUNICATION, VOLS 1-5, 2009, : 348 - +
  • [50] Optical frequency standard with a single 171Yb+ ion
    Chepurov, S., V
    Pavlov, N. A.
    Lugovoy, A. A.
    Bagayev, S. N.
    Taichenachev, A., V
    QUANTUM ELECTRONICS, 2021, 51 (06) : 473 - 478