Efficient Hardware Accelerator for Compressed Sparse Deep Neural Network

被引:3
|
作者
Xiao, Hao [1 ]
Zhao, Kaikai [1 ]
Liu, Guangzhu [1 ]
机构
[1] HeFei Univ Technol, Sch Microelect, Hefei, Peoples R China
基金
中国国家自然科学基金;
关键词
deep neural networks; filed programmable gate array; run-length compression; sparse data;
D O I
10.1587/transinf.2020EDL8153
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work presents a DNN accelerator architecture specifically designed for performing efficient inference on compressed and sparse DNN models. Leveraging the data sparsity, a runtime processing scheme is proposed to deal with the encoded weights and activations directly in the compressed domain without decompressing. Furthermore, a new data flow is proposed to facilitate the reusage of input activations across the fully-connected (FC) layers. The proposed design is implemented and verified using the Xilinx Virtex-7 FPGA. Experimental results show it achieves 1.99x, 1.95x faster and 20.38x, 3.04x more energy efficient than CPU and mGPU platforms, respectively, running AlexNet.
引用
收藏
页码:772 / 775
页数:4
相关论文
共 50 条
  • [21] ESSA: Design of a Programmable Efficient Sparse Spiking Neural Network Accelerator
    Kuang, Yisong
    Cui, Xiaoxin
    Wang, Zilin
    Zou, Chenglong
    Zhong, Yi
    Liu, Kefei
    Dai, Zhenhui
    Yu, Dunshan
    Wang, Yuan
    Huang, Ru
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2022, 30 (11) : 1631 - 1641
  • [22] Deep Neural Network Hardware Implementation Based on Stacked Sparse Autoencoder
    Coutinho, Maria G. F.
    Torquato, Matheus F.
    Fernandes, Marcelo A. C.
    IEEE ACCESS, 2019, 7 : 40674 - 40694
  • [23] An Energy-Efficient Deep Neural Network Accelerator Design
    Jung, Jueun
    Lee, Kyuho Jason
    2020 54TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2020, : 272 - 276
  • [24] EIE: Efficient Inference Engine on Compressed Deep Neural Network
    Han, Song
    Liu, Xingyu
    Mao, Huizi
    Pu, Jing
    Pedram, Ardavan
    Horowitz, Mark A.
    Dally, William J.
    2016 ACM/IEEE 43RD ANNUAL INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE (ISCA), 2016, : 243 - 254
  • [25] CoNNa-Hardware accelerator for compressed convolutional neural networks
    Struharik, Rastislav J. R.
    Vukobratovic, Bogdan Z.
    Erdeljan, Andrea M.
    Rakanovic, Damjan M.
    MICROPROCESSORS AND MICROSYSTEMS, 2020, 73
  • [26] Efficient binary 3D convolutional neural network and hardware accelerator
    Guoqing Li
    Meng Zhang
    Qianru Zhang
    Zhijian Lin
    Journal of Real-Time Image Processing, 2022, 19 : 61 - 71
  • [27] Efficient binary 3D convolutional neural network and hardware accelerator
    Li, Guoqing
    Zhang, Meng
    Zhang, Qianru
    Lin, Zhijian
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2022, 19 (01) : 61 - 71
  • [28] Efficient Hardware Architecture of Softmax Layer in Deep Neural Network
    Hu, Ruofei
    Tian, Binren
    Yin, Shouyi
    Wei, Shaojun
    2018 IEEE 23RD INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), 2018,
  • [29] Efficient Hardware Architecture of Softmax Layer in Deep Neural Network
    Yuan, Bo
    2016 29TH IEEE INTERNATIONAL SYSTEM-ON-CHIP CONFERENCE (SOCC), 2016, : 323 - 326
  • [30] SNAP: An Efficient Sparse Neural Acceleration Processor for Unstructured Sparse Deep Neural Network Inference
    Zhang, Jie-Fang
    Lee, Ching-En
    Liu, Chester
    Shao, Yakun Sophia
    Keckler, Stephen W.
    Zhang, Zhengya
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2021, 56 (02) : 636 - 647