Low-Temperature Synthesis of Nanocrystalline ZnO Nanorods Arrays

被引:0
|
作者
Kalasung, S. [1 ]
Chananonnawathorn, C. [1 ]
Horprathum, M. [2 ]
Thongpanit, P. [3 ]
Eiamchai, P. [2 ]
Limwichean, S. [2 ]
Pattanaboonmee, N. [3 ]
Witit-anun, N. [4 ]
Aiempanakit, K. [1 ]
机构
[1] Thammasat Univ, Fac Sci & Technol, Dept Phys, Pathum Thani 12121, Thailand
[2] Natl Elect & Comp Technol Ctr, Opt Thin Film Lab, Pathum Thani 12120, Thailand
[3] King Mongkuts Univ Technol Thonburi, Fac Sci, Dept Phys, Bangkok 10140, Thailand
[4] Burapha Univ, Fac Sci, Dept Phys, Chon Buri 20131, Thailand
关键词
Zinc Oxide; Nanorods; Seeding; Hydrothermal; FIELD-EMISSION;
D O I
10.4028/www.scientific.net/AMR.770.237
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this present research, vertically aligned ZnO nanorods arrays were grown on silicon wafer (100) substrates from a zinc nitrate hexahydrate and hexamethylenetetramine solution by a cost effective and low temperature (90 degrees C) hydrothermal growth method. Field-emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) were used to analyze morphology, crystallinity and film thickness, respectively. It was demonstrated that when the seed layer thickness change from 18 to 200 nm, the nanowire density increased. Our result presented a scalable method for fabricating ZnO nanorods arrays with potential for a lots of application such as micro/nanosensors and the nanoelectronic devices.
引用
收藏
页码:237 / +
页数:2
相关论文
共 50 条
  • [21] Low-temperature synthesis of nanocrystalline vanadium diboride
    Shi, LA
    Gu, Y
    Chen, LY
    Yang, ZH
    Ma, JH
    Qian, YT
    MATERIALS LETTERS, 2004, 58 (22-23) : 2890 - 2892
  • [22] Synthesis of Ag Nanoparticle-Decorated ZnO Nanorods Adopting the Low-Temperature Hydrothermal Method
    Shahi, Kanchana
    Singh, R. S.
    Singh, Jai
    Aleksandrova, Maria
    Singh, Ajaya Kumar
    JOURNAL OF ELECTRONIC MATERIALS, 2020, 49 (01) : 637 - 642
  • [23] Synthesis and properties of boron doped ZnO nanorods on silicon substrate by low-temperature hydrothermal reaction
    Yu, Qi
    Li, Liuan
    Li, Hongdong
    Gao, Shiyong
    Sang, Dandan
    Yuan, Jujun
    Zhu, Pinwen
    APPLIED SURFACE SCIENCE, 2011, 257 (14) : 5984 - 5988
  • [24] Large-scale synthesis of ZnO nanorods by a surfactant-free and low-temperature process
    Ma, Zhengxian
    Zhang, Ning
    Liu, Jiang
    Yan, Pingke
    ENVIRONMENT MATERIALS AND ENVIRONMENT MANAGEMENT PTS 1-3, 2010, 113-116 : 1740 - +
  • [25] An effective low-temperature solution synthesis of Co-doped [0001]-oriented ZnO nanorods
    Alnoor, Hatim
    Savoyant, Adrien
    Liu, Xianjie
    Pozina, Galia
    Willander, Magnus
    Nur, Omer
    JOURNAL OF APPLIED PHYSICS, 2017, 121 (21)
  • [26] Low-temperature synthesis of ZnO nanorods using organic-inorganic composite as a seed layer
    Ueno, Naoyuki
    Nakanishi, Kouji
    Ohta, Toshiaki
    Egashira, Yasuyuki
    Nishiyama, Norikazu
    THIN SOLID FILMS, 2012, 520 (13) : 4291 - 4296
  • [27] Synthesis of Ag Nanoparticle-Decorated ZnO Nanorods Adopting the Low-Temperature Hydrothermal Method
    Kanchana Shahi
    R. S. Singh
    Jai Singh
    Maria Aleksandrova
    Ajaya Kumar Singh
    Journal of Electronic Materials, 2020, 49 : 637 - 642
  • [28] Synthesis of lanthanum hydroxide nanorods by low-temperature aging
    Dodd, Aaron
    MATERIALS CHEMISTRY AND PHYSICS, 2012, 136 (2-3) : 300 - 303
  • [29] Low-temperature growth and field emission of ZnO nanowire arrays
    Cui, J.B.
    Daghlian, C.P.
    Gibson, U.J.
    Püsche, R.
    Geithner, P.
    Ley, L.
    Journal of Applied Physics, 2005, 97 (04):
  • [30] Vertically Aligned ZnO Nanorods Grown by Low-Temperature Solution Processing
    Lee, Sunghee
    Roy, Biplab Kumar
    Cho, Junghyun
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2013, 52 (05)