Evolutionary algorithms for multi-objective optimization: Performance assessments and comparisons

被引:0
|
作者
Tan, KC [1 ]
Lee, TH [1 ]
Khor, EF [1 ]
机构
[1] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 119260, Singapore
关键词
evolutionary algorithms; multi-objective optimization; Pareto optimality; survey;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Evolutionary techniques for multi-objective (MO) optimization are currently gaining significant attention from researchers in various fields due to their effectiveness and robustness in searching for a set of trade-off solutions. Unlike conventional methods that aggregate multiple attributes to form a composite scalar objective function, evolutionary algorithms with modified reproduction schemes for MO optimization are capable of treating each objective component separately and lead the search in discovering the global Pareto-optimal front. The rapid advances of multi-objective evolutionary algorithms, however, poses the difficulty of keeping track of the developments in this field as well as selecting an existing approach that best suits the optimization problem in-hand. This paper thus provides a survey on various evolutionary methods for MO optimization. Many well-known multi-objective evolutionary algorithms have been experimented with and compared extensively on four benchmark problems with different MO optimization difficulties. Besides considering the usual performance measures in MO optimization, e.g., the spread across the Pareto-optimal front and the ability to attain the global trade-offs, the paper also presents a few metrics to examine the strength and weakness of each evolutionary approach both quantitatively and qualitatively. Simulation results for the comparisons are analyzed, summarized and commented.
引用
收藏
页码:253 / 290
页数:38
相关论文
共 50 条
  • [31] Automatic Design of Evolutionary Algorithms for Multi-Objective Combinatorial Optimization
    Bezerra, Leonardo C. T.
    Lopez-Ibanez, Manuel
    Stuetzle, Thomas
    PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XIII, 2014, 8672 : 508 - 517
  • [32] Archivers for Single- and Multi-objective Evolutionary Optimization Algorithms
    Hernandez, Carlos
    Schutze, Oliver
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022, 2022, : 37 - 38
  • [33] Multi-objective optimization in evolutionary algorithms using satisfiability classes
    Drechsler, N
    Drechsler, R
    Becker, B
    COMPUTATIONAL INTELLIGENCE: THEORY AND APPLICATIONS, 1999, 1625 : 108 - 117
  • [34] Solving Constrained Multi-objective Optimization Problems with Evolutionary Algorithms
    Snyman, Frikkie
    Helbig, Marde
    ADVANCES IN SWARM INTELLIGENCE, ICSI 2017, PT II, 2017, 10386 : 57 - 66
  • [35] Automatic design of evolutionary algorithms for multi-objective combinatorial optimization
    20174004240294
    (1) IRIDIA, Université Libre de Bruxelles (ULB), Brussels, Belgium, 1600, (Springer Verlag):
  • [36] A Systematic Review of Multi-Objective Evolutionary Algorithms Optimization Frameworks
    Patrausanu, Andrei
    Florea, Adrian
    Neghina, Mihai
    Dicoiu, Alina
    Chis, Radu
    PROCESSES, 2024, 12 (05)
  • [37] Nonlinear optimization with fuzzy constraints by multi-objective evolutionary algorithms
    Jiménez, F
    Sánchez, G
    Cadenas, JM
    Gómez-Skarmeta, AF
    Verdegay, JL
    Computational Intelligence, Theory and Applications, 2005, : 713 - 722
  • [38] A Survey on Search Strategy of Evolutionary Multi-Objective Optimization Algorithms
    Wang, Zitong
    Pei, Yan
    Li, Jianqiang
    APPLIED SCIENCES-BASEL, 2023, 13 (07):
  • [39] Optimization of sensor deployment using multi-objective evolutionary algorithms
    Ndam Njoya A.
    Abdou W.
    Dipanda A.
    Tonye E.
    Journal of Reliable Intelligent Environments, 2016, 2 (4) : 209 - 220
  • [40] MULTI-OBJECTIVE NETWORK RELIABILITY OPTIMIZATION USING EVOLUTIONARY ALGORITHMS
    Aguirre, Oswaldo
    Villanueva, Delia
    Taboada, Heidi
    15TH ISSAT INTERNATIONAL CONFERENCE ON RELIABILITY AND QUALITY IN DESIGN, PROCEEDINGS, 2009, : 427 - 431