A Fully Nonparametric Modeling Approach to Binary Regression

被引:13
|
作者
DeYoreo, Maria [1 ]
Kottas, Athanasios [2 ]
机构
[1] Duke Univ, Dept Stat Sci, Durham, NC 27708 USA
[2] Univ Calif Santa Cruz, Dept Appl Math & Stat, Santa Cruz, CA 95064 USA
来源
BAYESIAN ANALYSIS | 2015年 / 10卷 / 04期
基金
美国国家科学基金会;
关键词
Bayesian nonparametrics; Dirichlet process mixture model; identifiability; Markov chain Monte Carlo; ordinal regression; BAYESIAN-ANALYSIS; LOGISTIC-REGRESSION; NATURAL-SELECTION; SAMPLING METHODS; DIRICHLET; INFERENCE; MIXTURES;
D O I
10.1214/15-BA963SI
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose a general nonparametric Bayesian framework for binary regression, which is built from modeling for the joint response-covariate distribution. The observed binary responses are assumed to arise from underlying continuous random variables through discretization, and we model the joint distribution of these latent responses and the covariates using a Dirichlet process mixture of multivariate normals. We show that the kernel of the induced mixture model for the observed data is identifiable upon a restriction on the latent variables. To allow for appropriate dependence structure while facilitating identifiability, we use a square-root-free Cholesky decomposition of the covariance matrix in the normal mixture kernel. In addition to allowing for the necessary restriction, this modeling strategy provides substantial simplifications in implementation of Markov chain Monte Carlo posterior simulation. We present two data examples taken from areas for which the methodology is especially well suited. In particular, the first example involves estimation of relationships between environmental variables, and the second develops inference for natural selection surfaces in evolutionary biology. Finally, we discuss extensions to regression settings with ordinal responses.
引用
收藏
页码:821 / 847
页数:27
相关论文
共 50 条
  • [21] Bayesian Nonparametric Modeling for Multivariate Ordinal Regression
    DeYoreo, Maria
    Kottas, Athanasios
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2018, 27 (01) : 71 - 84
  • [22] Nonparametric Distribution Regression Applied to Sensor Modeling
    Tallavajhula, Abhijeet
    Poczos, Barnabas
    Kelly, Alonzo
    2016 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2016), 2016, : 619 - 625
  • [23] Nonparametric Combinatorial Regression for Shape Constrained Modeling
    Koushanfar, Farinaz
    Majzoobi, Mehrdad
    Potkonjak, Miodrag
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (02) : 626 - 637
  • [24] MODELING OF POVERTY LEVEL IN SOUTH SULAWESI PROVINCE THROUGH SPLINE NONPARAMETRIC REGRESSION APPROACH
    Alwi, Wahidah
    Irwan
    Ermawati
    Nurman, Try Azisah
    Hernawati
    Ibnas, Risnawati
    COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2023,
  • [25] NONPARAMETRIC STATISTICAL MODELING OF BINARY STAR SEPARATIONS
    HEACOX, WD
    GATHRIGHT, J
    ASTRONOMICAL JOURNAL, 1994, 108 (03): : 1101 - 1111
  • [26] Univariate Bayesian nonparametric binary regression with application in environmental management
    Qian, SS
    Lavine, M
    Stow, CA
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2000, 7 (01) : 77 - 91
  • [27] Univariate Bayesian nonparametric binary regression with application in environmental management
    Song S. Qian
    Michael Lavine
    Craig A. Stow
    Environmental and Ecological Statistics, 2000, 7 : 77 - 91
  • [28] Spatial variation in risk of disease: a nonparametric binary regression approach (vol 47, pg 559, 1998)
    Kelsall, JE
    Diggle, PJ
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2002, 51 : 373 - 373
  • [29] On confidence intervals in nonparametric binary regression via Edgeworth expansions
    Rodríguez-Campos, MC
    JOURNAL OF MULTIVARIATE ANALYSIS, 1999, 69 (02) : 218 - 241
  • [30] Posterior consistency of Gaussian process prior for nonparametric binary regression
    Ghosal, Subhashis
    Roy, Anindya
    ANNALS OF STATISTICS, 2006, 34 (05): : 2413 - 2429