Slow thermo-optomechanical pulsations in suspended one-dimensional photonic crystal nanocavities

被引:5
|
作者
Fonseca, Piergiacomo Z. G. [1 ]
Alda, Irene [1 ]
Marino, Francesco [2 ]
Cuadrado, Alexander [3 ]
D'Ambrosio, Vincenzo [1 ,4 ]
Gieseler, Jan [1 ]
Quidant, Romain [1 ,5 ,6 ]
机构
[1] ICFO Inst Ciencies Foton, Mediterranean Technol Pk, Barcelona 08860, Spain
[2] Ist Nazl Ottica, Via Sansone 1, I-50019 Florence, Italy
[3] Univ Rey Juan Carlos, Escuela Ciencias Expt & Tecnol, Madrid 28933, Spain
[4] Univ Napoli Federico II, Complesso Univ Monte S Angelo, Dipartimento Fis, Via Cintia, I-80126 Naples, Italy
[5] ICREA Inst Catalana Recerca & Estud Avancats, Barcelona 08010, Spain
[6] Swiss Fed Inst Technol, Dept Mech & Proc Engn, Nanophoton Syst Lab, CH-8092 Zurich, Switzerland
基金
欧洲研究理事会;
关键词
Nonlinear optics - Optomechanics - Photonic crystals;
D O I
10.1103/PhysRevA.102.053518
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We investigate the nonlinear optical response of suspended one-dimensional (1D) photonic crystal nanocavities fabricated on a silicon nitride chip. Strong thermo-optical nonlinearities are demonstrated for input powers as low as 2 mu W and a self-sustained pulsing regime is shown to emerge with periodicity of several seconds. As the input power and laser wavelength are varied the temporal patterns change in period, duty cycle, and shape. This dynamics is attributed to the multiple timescale competition between thermo-optical and thermo-optomechanical effects and closely resembles the relaxation oscillations states found in mathematical models of neuronal activity. We introduce a simplified model that reproduces all the experimental observations and allows us to explain them in terms of the properties of a 1D critical manifold which governs the slow evolution of the system.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Polarization gaps in one-dimensional magnetic photonic crystal
    Wang, Hong
    Wang, Guangjun
    Han, Yanling
    Chen, Fenxiong
    OPTICS COMMUNICATIONS, 2014, 310 : 199 - 203
  • [42] Demultiplexer based on one-dimensional chalcogenide photonic crystal
    Singh, Rajpal
    Bhargava, Anami
    MATERIALS TODAY-PROCEEDINGS, 2022, 62 : 5271 - 5274
  • [43] Enhancement of photoluminescence due to one-dimensional photonic crystal
    Shobudani, Kohei
    Morifuji, Masato
    2013 IEEE INTERNATIONAL MEETING FOR FUTURE OF ELECTRON DEVICES, KANSAI (IMFEDK2013), 2013,
  • [44] Enhanced of Photonic Bandgaps in One-Dimensional Plasma Photonic Crystal with Defect
    Pandey, G. N.
    Shukla, Anil Kumar
    Thapa, Khem. B.
    Pandey, J. P.
    ADVANCES IN OPTICAL SCIENCE AND ENGINEERING, 2017, 194 : 219 - 225
  • [45] One-dimensional time-Floquet photonic crystal
    Wang, Neng
    Wang, Guo Ping
    NEW JOURNAL OF PHYSICS, 2021, 23 (10):
  • [46] Optimal design for one-dimensional photonic crystal waveguide
    Jae-Soong, I
    Park, Y
    Jeon, H
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2004, 22 (02) : 509 - 513
  • [47] Color evaluation of one-dimensional photonic crystal on the fabric
    Xiaoyan Liu
    Houxiang Cui
    Fibers and Polymers, 2014, 15 : 783 - 787
  • [48] Abnormal behaviour of one-dimensional photonic crystal with defect
    Kumar, Vipin
    Singh, Kh. S.
    Ojha, S. P.
    OPTIK, 2011, 122 (13): : 1183 - 1187
  • [49] Photonic crystal waveguides:: A one-dimensional model theory
    Stout, B
    Stout, S
    Nevière, M
    JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2001, 15 (07) : 961 - 988
  • [50] A one-dimensional photonic crystal with a superconducting defect layer
    Lyubchanskii, I. L.
    Dadoenkova, N. N.
    Zabolotin, A. E.
    Lee, Y. P.
    Rasing, Th
    JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 2009, 11 (11):