Experimental Study of Electrical Properties of Pharmaceutical Materials by Electrical Impedance Spectroscopy

被引:9
|
作者
Vazquez-Nambo, Manuel [1 ]
Gutierrez-Gnecchi, Jose-Antonio [1 ]
Reyes-Archundia, Enrique [1 ]
Yang, Wuqiang [2 ]
Rodriguez-Frias, Marco-A [2 ]
Olivares-Rojas, Juan-Carlos [1 ]
Lorias-Espinoza, Daniel [3 ]
机构
[1] Tecnol Nacl Mexico, Div Estudios Posgrad & Invest, Inst Tecnol Morelia, Ave Tecnol 1500, Morelia 58120, Michoacan, Mexico
[2] Univ Manchester, Dept Elect & Elect Engn, Manchester M13 9PL, Lancs, England
[3] CINVESTAV IPN, Av Inst Politecn Nacl 2508, Mexico City 07360, DF, Mexico
来源
APPLIED SCIENCES-BASEL | 2020年 / 10卷 / 18期
关键词
drug modelling; frequency response; electrical impedance spectroscopy; system identification; DIELECTRIC-PROPERTIES; FREQUENCY DISPERSION; BIOLOGICAL TISSUES; SULFAMETHOXAZOLE; ELECTRODES; MODELS;
D O I
10.3390/app10186576
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The physicochemical characterization of pharmaceutical materials is essential for drug discovery, development and evaluation, and for understanding and predicting their interaction with physiological systems. Amongst many measurement techniques for spectroscopic characterization of pharmaceutical materials, Electrical Impedance Spectroscopy (EIS) is powerful as it can be used to model the electrical properties of pure substances and compounds in correlation with specific chemical composition. In particular, the accurate measurement of specific properties of drugs is important for evaluating physiological interaction. The electrochemical modelling of compounds is usually carried out using spectral impedance data over a wide frequency range, to fit a predetermined model of an equivalent electrochemical cell. This paper presents experimental results by EIS analysis of four drug formulations (trimethoprim/sulfamethoxazole C14H18N4O3-C10H11N3O3, ambroxol C13H18Br2N2O.HCl, metamizole sodium C13H16N3NaO4S, and ranitidine C13H22N4O3S.HCl). A wide frequency range from 20 Hz to 30 MHz is used to evaluate system identification techniques using EIS data and to obtain process models. The results suggest that arrays of linear R-C models derived using system identification techniques in the frequency domain can be used to identify different compounds.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Electrical impedance spectroscopy study of piezoelectric PVDF membranes
    M. T. Darestani
    T. C. Chilcott
    H. G. L. Coster
    Journal of Solid State Electrochemistry, 2014, 18 : 595 - 605
  • [22] STUDY OF THE ELECTRICAL ANISOTROPY OF POLYPYRROLE FILMS BY IMPEDANCE SPECTROSCOPY
    MONTEMAYOR, MC
    JIMENEZ, R
    FATAS, E
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1993, 361 (1-2): : 115 - 119
  • [23] Electrical impedance spectroscopy study of piezoelectric PVDF membranes
    Darestani, M. T.
    Chilcott, T. C.
    Coster, H. G. L.
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2014, 18 (03) : 595 - 605
  • [24] Experimental Analysis of Electrical Properties of Composite Materials
    Fiala, L.
    Rovnanik, P.
    Cerny, R.
    PROCEEDINGS OF THE 6TH INTERNATIONAL ADVANCES IN APPLIED PHYSICS AND MATERIALS SCIENCE CONGRESS & EXHIBITION (APMAS 2016), 2017, 1809
  • [25] Mechanical, electrical properties and impedance spectroscopy characterization of rammed earth
    Rachid Bouferra
    Amal Hachimi
    Amine Zoubir
    Abdelouahab Knidiri
    Said El Hasri
    Lahcen Essaleh
    Mohamed Waqif
    Arabian Journal of Geosciences, 2022, 15 (17)
  • [26] In vitro electrical impedance spectroscopy of human dentine: The effect of restorative materials
    Rivas, Berta
    Botta, Pablo M.
    Varela, Purificacion
    Martin, Benjamin
    Fondado, Alfonso
    Rivas, Jose
    BIOELECTROMAGNETICS, 2008, 29 (03) : 163 - 168
  • [27] Impedance Spectroscopy Study of the Electrical Properties of Cation-Substituted Barium Hexaaluminate Ceramics
    B. A. Belyaev
    N. A. Drokin
    V. A. Poluboyarov
    Physics of the Solid State, 2018, 60 : 274 - 280
  • [28] Impedance Spectroscopy Study of the Electrical Properties of Cation-Substituted Barium Hexaaluminate Ceramics
    Belyaev, B. A.
    Drokin, N. A.
    Poluboyarov, V. A.
    PHYSICS OF THE SOLID STATE, 2018, 60 (02) : 274 - 280
  • [29] EVOLUTION OF EXPERIMENTAL TECHNIQUES FOR THE STUDY OF THE ELECTRICAL PROPERTIES OF INSULATING MATERIALS.
    Lewiner, J.
    IEEE transactions on electrical insulation, 1985, EI-21 (03): : 351 - 360
  • [30] Evaluation of electrical characteristics of biological tissue with electrical impedance spectroscopy
    Yao, Jiafeng
    Wang, Li
    Liu, Kai
    Wu, Hongtao
    Wang, Hao
    Huang, Jingshi
    Li, Jianping
    ELECTROPHORESIS, 2020, 41 (16-17) : 1425 - 1432