New closed-form estimators for weighted Lindley distribution

被引:1
|
作者
Kim, Hyoung-Moon [1 ]
Jang, Yu-Hyeong [2 ]
机构
[1] Konkuk Univ, Dept Appl Stat, Seoul, South Korea
[2] Korea Univ, Dept Stat, Seoul, South Korea
关键词
Weighted Lindley distribution; Closed-form estimators; Maximum likelihood estimator; Bias correction; Asymptotic distribution; GENERALIZED LINDLEY; PARAMETERS; MODEL;
D O I
10.1007/s42952-020-00097-y
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose new closed-form estimators for two-parameter weighted Lindley (WL) distribution. These new estimators are derived from likelihood equations of power transformed WL distribution. They behave very similarly to maximum likelihood estimators (MLEs) and achieve consistency and asymptotic normality. Numerical results show that, unlike existing closed-form estimators, the new estimators are uniformly comparable to MLEs. In addition, to reduce biases of the new estimators in the case of small samples, we apply a bias-correction method to the new estimators, based on the approximate Cox-Snell formula. Our simulation studies indicate that this bias-correction method is effective in enhancing small-sample performance. Finally, we present three real data examples.
引用
收藏
页码:580 / 606
页数:27
相关论文
共 50 条
  • [41] New closed-form estimator and its properties
    Hyoung-Moon Kim
    SungBum Kim
    Yu-Hyeong Jang
    Jun Zhao
    Journal of the Korean Statistical Society, 2022, 51 : 47 - 64
  • [42] CLOSED-FORM SOLUTION FOR SYSTEM AVAILABILITY DISTRIBUTION.
    Donatiello, Lorenzo
    Iyer, Balakrishna R.
    IEEE Transactions on Reliability, 1987, R-36 (01) : 45 - 47
  • [43] Closed-form solutions for the Levy-stable distribution
    Arias-Calluari, Karina
    Alonso-Marroquin, Fernando
    Harre, Michael S.
    PHYSICAL REVIEW E, 2018, 98 (01)
  • [44] Closed-Form Estimators for Blind Separation of Sources – Part I: Real Mixtures
    Vicente Zarzoso
    Asoke K. Nandi
    Wireless Personal Communications, 2002, 21 : 5 - 28
  • [45] New closed-form bounds on the partition function
    Krishnamurthy, Dvijotham
    Chakrabarti, Soumen
    Chaudhuri, Subhasis
    MACHINE LEARNING, 2008, 72 (03) : 205 - 229
  • [46] New closed-form bounds on the partition function
    Dvijotham Krishnamurthy
    Soumen Chakrabarti
    Subhasis Chaudhuri
    Machine Learning, 2008, 72 : 205 - 229
  • [47] New closed-form estimator and its properties
    Kim, Hyoung-Moon
    Kim, SungBum
    Jang, Yu-Hyeong
    Zhao, Jun
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2022, 51 (01) : 47 - 64
  • [48] Maximum-likelihood and closed-form estimators of epidemiologic measures under misclassification
    Greenland, Sander
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (02) : 528 - 538
  • [49] CLOSED-FORM EXPRESSIONS FOR THE MOMENTS OF THE BINOMIAL PROBABILITY DISTRIBUTION
    Knoblauch, Andreas
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2008, 69 (01) : 197 - 204
  • [50] Closed-form parameter estimates for a truncated gamma distribution
    Brawn, Dan
    Upton, Graham
    ENVIRONMETRICS, 2007, 18 (06) : 633 - 645