Generalized Killing equations for spinning spaces and the role of Killing-Yano tensors

被引:6
|
作者
Visinescu, M
机构
[1] Department of Theoretical Physics, Institute of Atomic Physics, Magurele, Bucharest
关键词
D O I
10.1016/S0920-5632(97)00319-8
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The generalized Killing equations for the configuration space of spinning particles (spinning space) are analysed. Solutions of these equations are expressed in terms of Killing-Yano tensors. The constants of motion can be seen as extensions of those from the scalar case or new ones depending on the Grassmann-valued spin variables. The general results are applied to the case of the four-dimensional Euclidean Taub-NUT spinning space.
引用
收藏
页码:142 / 147
页数:6
相关论文
共 50 条
  • [41] Geometry, conformal Killing-Yano tensors and conserved “currents”
    Ulf Lindström
    Özgür Sarıoğlu
    Journal of High Energy Physics, 2023
  • [42] Some remarks on (super)-conformal Killing-Yano tensors
    Howe, P. S.
    Lindstrom, U.
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (11):
  • [43] Killing-Yano tensors, rank-2 Killing tensors, and conserved quantities in higher dimensions
    Krtous, Pavel
    Kubiznak, David
    Page, Don N.
    Frolov, Valeri P.
    JOURNAL OF HIGH ENERGY PHYSICS, 2007, (02):
  • [44] Superalgebras of Dirac operators on manifolds with special Killing-Yano tensors
    Cotaescu, Ion I.
    Visinescu, Mihai
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2006, 54 (12): : 1142 - 1164
  • [45] Dirac symmetry operators from conformal Killing-Yano tensors
    Benn, IM
    Charlton, P
    CLASSICAL AND QUANTUM GRAVITY, 1997, 14 (05) : 1037 - 1042
  • [46] Geometry of Lax pairs: Particle motion and Killing-Yano tensors
    Cariglia, Marco
    Frolov, Valeri P.
    Krtous, Pavel
    Kubiznak, David
    PHYSICAL REVIEW D, 2013, 87 (02):
  • [47] Killing-Yano Cotton currents
    Ulf Lindström
    Özgür Sarıoğlu
    Journal of High Energy Physics, 2022
  • [48] Killing-Yano 2-forms on homogeneous spaces
    Dotti I.G.
    Herrera A.C.
    São Paulo Journal of Mathematical Sciences, 2018, 12 (2) : 227 - 245
  • [49] Killing-Yano Cotton currents
    Lindstrom, Ulf
    Sarioglu, Ozgur
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (03)
  • [50] Conformal Killing-Yano tensors for the Plebanski-Demianski family of solutions
    Kubiznak, David
    Krtous, Pavel
    PHYSICAL REVIEW D, 2007, 76 (08)