Transitivity on Minimum Dominating Sets of Paths and Cycles

被引:4
|
作者
Hernandez-Gomez, Juan C. [1 ]
Reyna-Hernandez, Gerardo [1 ]
Romero-Valencia, Jesus [2 ]
Rosario Cayetano, Omar [1 ]
机构
[1] Autonomous Univ Guerrero, Fac Math, Carlos E Adame 5, Acapulco 39087, Guerrero, Mexico
[2] Autonomous Univ Guerrero, Fac Math, Sauce 19, Chilpancingo De Los Brav 39086, Guerrero, Mexico
来源
SYMMETRY-BASEL | 2020年 / 12卷 / 12期
关键词
domination; gamma-set; automorphism; transitivity; TOTAL K-DOMINATION; NUMBER;
D O I
10.3390/sym12122053
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Transitivity on graphs is a concept widely investigated. This suggest to analyze the action of automorphisms on other sets. In this paper, we study the action on the family of gamma-sets (minimum dominating sets), the graph is called gamma-transitive if given two gamma-sets there exists an automorphism which maps one onto the other. We deal with two families: paths Pn and cycles Cn. Their gamma-sets are fully characterized and the action of the automorphism group on the family of gamma-sets is fully analyzed.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [31] MINIMUM DOMINATING CYCLES IN 2-TREES
    PROSKUROWSKI, A
    INTERNATIONAL JOURNAL OF COMPUTER & INFORMATION SCIENCES, 1979, 8 (05): : 405 - 417
  • [32] On minimum intersection of two minimum dominating sets of interval graphs
    Chang, MS
    Hsu, CC
    DISCRETE APPLIED MATHEMATICS, 1997, 78 (1-3) : 41 - 50
  • [33] On the maximum number of minimum dominating sets in forests
    Alvarado, J. D.
    Dantas, S.
    Mohr, E.
    Rautenbach, D.
    DISCRETE MATHEMATICS, 2019, 342 (04) : 934 - 942
  • [34] On the Number of Minimum Total Dominating Sets in Trees
    Taletskii D.S.
    Journal of Applied and Industrial Mathematics, 2023, 17 (01) : 213 - 224
  • [35] RECONFIGURING MINIMUM DOMINATING SETS: THE γ-GRAPH OF A TREE
    Edwards, Michelle
    MacGillivray, Gary
    Nasserasr, Shahla
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2018, 38 (03) : 703 - 716
  • [36] Bounds on the maximum number of minimum dominating sets
    Connolly, Samuel
    Gabor, Zachary
    Godbole, Anant
    Kay, Bill
    Kelly, Thomas
    DISCRETE MATHEMATICS, 2016, 339 (05) : 1537 - 1542
  • [37] Block graphs with unique minimum dominating sets
    Fischermann, M
    DISCRETE MATHEMATICS, 2001, 240 (1-3) : 247 - 251
  • [38] Trees with Unique Minimum Semitotal Dominating Sets
    Haynes, Teresa W.
    Henning, Michael A.
    GRAPHS AND COMBINATORICS, 2020, 36 (03) : 689 - 702
  • [39] Reconfiguring Minimum Independent Dominating Sets in Graphs
    Brewster, R. C.
    Mynhardt, C. M.
    Teshima, L. E.
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2024, 9 (03) : 389 - 411
  • [40] UNIQUE MINIMUM SEMIPAIRED DOMINATING SETS IN TREES
    Haynes, Teresa W.
    Henning, Michael A.
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2023, 43 (01) : 35 - 53