A variety of (3+1)-dimensional mKdV equations derived by using the mKdV recursion operator

被引:10
|
作者
Wazwaz, Abdul-Majid [1 ]
机构
[1] St Xavier Univ, Dept Math, Chicago, IL 60655 USA
关键词
(3+1)-Dimensional mKdV equation; Recursion operator; Multiple soliton solutions; PARTIAL-DIFFERENTIAL-EQUATIONS; HIROTA 3-SOLITON CONDITION; SINGULAR SOLITON-SOLUTIONS; MULTIPLE KINK SOLUTIONS; INTEGRABLE SYSTEMS; BILINEAR EQUATIONS; BURGERS EQUATIONS; CONSERVATION-LAWS; SYMMETRIES; SEARCH;
D O I
10.1016/j.compfluid.2014.01.010
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We establish a new variety of (3 + 1)-dimensional modified Korteweg-de Vries (mKdV) equations. The recursion operator of the mKdV equation is used to derive these higher-order dimensional integrable mKdV equations. The new integrable equations generate distinct solitons structures and distinct dispersion relations as well. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:41 / 45
页数:5
相关论文
共 50 条
  • [31] Traveling Waves in Two Distinct Equations: The (1+1)-Dimensional cKdV–mKdV Equation and The sinh-Gordon Equation
    Khan K.
    Mudaliar R.K.
    Islam S.M.R.
    International Journal of Applied and Computational Mathematics, 2023, 9 (3)
  • [32] (3+1)维时空分数阶mKdV-Zakharov-Kuznetsov方程的分支及解结构
    王美
    孙峪怀
    四川师范大学学报(自然科学版), 2023, 46 (04) : 457 - 463
  • [33] Explicit Solutions for a New (2+1)-Dimensional Coupled mKdV Equation
    WANG Zheng-Yan~1 ZHANG Jin-Shun~2 1 Department of Mathematics
    CommunicationsinTheoreticalPhysics, 2008, 49 (02) : 396 - 400
  • [34] Explicit solutions for a new (2+1)-dimensional coupled mKdV equation
    Wang Zheng-Yan
    Mang Jin-Shun
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2008, 49 (02) : 396 - 400
  • [35] A coupled (2+1)-dimensional mKdV system and its nonlocal reductions
    Zhu, Xiaoming
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 91
  • [36] Symmetries and Algebras of a (2+1)-Dimensional MKdV-Type System
    王建勇
    俞军
    楼森岳
    Communications in Theoretical Physics, 2010, 53 (06) : 999 - 1004
  • [37] RECURSION OPERATORS AND HIERARCHIES OF mKdV EQUATIONS RELATED TO THE KAC-MOODY ALGEBRAS D4(1), D4(2), AND D4(3)
    Gerdjikov, V. S.
    Stefanov, A. A.
    Iliev, I. D.
    Boyadjiev, G. P.
    Smirnov, A. O.
    Matveev, V. B.
    Pavlov, M. V.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2020, 204 (03) : 1110 - 1129
  • [38] Symmetries and Algebras of a (2+1)-Dimensional MKdV-Type System
    Wang Jian-Yong
    Yu Jun
    Lou Sen-Yue
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2010, 53 (06) : 999 - 1004
  • [40] Integrable nonlocal PT-symmetric generalized so(3,R)-mKdV equations
    Chen, Shou-Ting
    Ma, Wen-Xiu
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2023, 75 (12)