A variety of (3+1)-dimensional mKdV equations derived by using the mKdV recursion operator

被引:10
|
作者
Wazwaz, Abdul-Majid [1 ]
机构
[1] St Xavier Univ, Dept Math, Chicago, IL 60655 USA
关键词
(3+1)-Dimensional mKdV equation; Recursion operator; Multiple soliton solutions; PARTIAL-DIFFERENTIAL-EQUATIONS; HIROTA 3-SOLITON CONDITION; SINGULAR SOLITON-SOLUTIONS; MULTIPLE KINK SOLUTIONS; INTEGRABLE SYSTEMS; BILINEAR EQUATIONS; BURGERS EQUATIONS; CONSERVATION-LAWS; SYMMETRIES; SEARCH;
D O I
10.1016/j.compfluid.2014.01.010
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We establish a new variety of (3 + 1)-dimensional modified Korteweg-de Vries (mKdV) equations. The recursion operator of the mKdV equation is used to derive these higher-order dimensional integrable mKdV equations. The new integrable equations generate distinct solitons structures and distinct dispersion relations as well. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:41 / 45
页数:5
相关论文
共 50 条