Unrestricted density functional theory based on the fragment molecular orbital method for the ground and excited state calculations of large systems

被引:19
|
作者
Nakata, Hiroya [1 ,2 ]
Fedorov, Dmitri G. [3 ]
Yokojima, Satoshi [2 ,4 ]
Kitaura, Kazuo [5 ]
Sakurai, Minoru [1 ]
Nakamura, Shinichiro [2 ]
机构
[1] Tokyo Inst Technol, Ctr Biol Resources & Informat, Midori Ku, Yokohama, Kanagawa 2268501, Japan
[2] RIKEN, Res Cluster Innovat, Nakamura Lab, Wako, Saitama 3510198, Japan
[3] Natl Inst Adv Ind Sci & Technol, NRI, Tsukuba, Ibaraki 3058568, Japan
[4] Tokyo Univ Pharm & Life Sci, Hachioji, Tokyo 1920392, Japan
[5] Kobe Univ, Grad Sch Syst Informat, Nada Ku, Kobe, Hyogo 6578501, Japan
来源
JOURNAL OF CHEMICAL PHYSICS | 2014年 / 140卷 / 14期
关键词
POLARIZABLE CONTINUUM MODEL; CHEMICAL-SHIFT CALCULATIONS; COUPLED-CLUSTER METHOD; AB-INITIO; GEOMETRY OPTIMIZATIONS; ELECTRONIC-STRUCTURE; EXCITATION-ENERGIES; QUANTUM-CHEMISTRY; WAVE-FUNCTION; HARTREE-FOCK;
D O I
10.1063/1.4870261
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We extended the fragment molecular orbital (FMO) method interfaced with density functional theory (DFT) into spin unrestricted formalism (UDFT) and developed energy gradients for the ground state and single point excited state energies based on time-dependent DFT. The accuracy of FMO is evaluated in comparison to the full calculations without fragmentation. Electronic excitations in solvated organic radicals and in the blue copper protein, plastocyanin (PDB code: 1BXV), are reported. The contributions of solvent molecules to the electronic excitations are analyzed in terms of the fragment polarization and quantum effects such as interfragment charge transfer. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] On the ground electronic state of MoO+:: Upgrade density functional theory calculations
    Broclawik, E
    Piskorz, W
    Adamska, K
    JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (24): : 11685 - 11687
  • [33] Density functional theory based effective fragment potential method
    Adamovic, I
    Freitag, MA
    Gordon, MS
    JOURNAL OF CHEMICAL PHYSICS, 2003, 118 (15): : 6725 - 6732
  • [34] Unrestricted Hartree-Fock based on the fragment molecular orbital method: Energy and its analytic gradient
    Nakata, Hiroya
    Fedorov, Dmitri G.
    Nagata, Takeshi
    Yokojima, Satoshi
    Ogata, Koji
    Kitaura, Kazuo
    Nakamura, Shinichiro
    JOURNAL OF CHEMICAL PHYSICS, 2012, 137 (04): : 044110
  • [35] Polarizable Continuum Model with the Fragment Molecular Orbital-Based Time-Dependent Density Functional Theory
    Chiba, Mahito
    Fedorov, Dmitri G.
    Kitaura, Kazuo
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2008, 29 (16) : 2667 - 2676
  • [36] Multireference Density Functional Theory with Generalized Auxiliary Systems for Ground and Excited States
    Chen, Zehua
    Zhang, Du
    Jin, Ye
    Yang, Yang
    Su, Neil Qiang
    Yang, Weitao
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2017, 8 (18): : 4479 - 4485
  • [37] Multireference density functional theory with generalized auxiliary systems for ground and excited states
    Chen, Zehua
    Zhang, Du
    Jin, Ye
    Yang, Yang
    Su, Neil Qiang
    Yang, Weitao
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [38] Extending the power of quantum chemistry to large systems with the fragment molecular orbital method
    Fedorov, Dmitri G.
    Kitaura, Kazuo
    JOURNAL OF PHYSICAL CHEMISTRY A, 2007, 111 (30): : 6904 - 6914
  • [39] Beyond DFT: Density MATRIX functional theory for ground state and excited state energy surfaces
    Baerends, Evert Jan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [40] Density-Functional Tight-Binding Combined with the Fragment Molecular Orbital Method
    Nishimoto, Yoshio
    Fedorov, Dmitri G.
    Irle, Stephan
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2014, 10 (11) : 4801 - 4812