Unrestricted density functional theory based on the fragment molecular orbital method for the ground and excited state calculations of large systems

被引:19
|
作者
Nakata, Hiroya [1 ,2 ]
Fedorov, Dmitri G. [3 ]
Yokojima, Satoshi [2 ,4 ]
Kitaura, Kazuo [5 ]
Sakurai, Minoru [1 ]
Nakamura, Shinichiro [2 ]
机构
[1] Tokyo Inst Technol, Ctr Biol Resources & Informat, Midori Ku, Yokohama, Kanagawa 2268501, Japan
[2] RIKEN, Res Cluster Innovat, Nakamura Lab, Wako, Saitama 3510198, Japan
[3] Natl Inst Adv Ind Sci & Technol, NRI, Tsukuba, Ibaraki 3058568, Japan
[4] Tokyo Univ Pharm & Life Sci, Hachioji, Tokyo 1920392, Japan
[5] Kobe Univ, Grad Sch Syst Informat, Nada Ku, Kobe, Hyogo 6578501, Japan
来源
JOURNAL OF CHEMICAL PHYSICS | 2014年 / 140卷 / 14期
关键词
POLARIZABLE CONTINUUM MODEL; CHEMICAL-SHIFT CALCULATIONS; COUPLED-CLUSTER METHOD; AB-INITIO; GEOMETRY OPTIMIZATIONS; ELECTRONIC-STRUCTURE; EXCITATION-ENERGIES; QUANTUM-CHEMISTRY; WAVE-FUNCTION; HARTREE-FOCK;
D O I
10.1063/1.4870261
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We extended the fragment molecular orbital (FMO) method interfaced with density functional theory (DFT) into spin unrestricted formalism (UDFT) and developed energy gradients for the ground state and single point excited state energies based on time-dependent DFT. The accuracy of FMO is evaluated in comparison to the full calculations without fragmentation. Electronic excitations in solvated organic radicals and in the blue copper protein, plastocyanin (PDB code: 1BXV), are reported. The contributions of solvent molecules to the electronic excitations are analyzed in terms of the fragment polarization and quantum effects such as interfragment charge transfer. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Excited state geometry optimizations by time-dependent density functional theory based on the fragment molecular orbital method
    Chiba, Mahito
    Fedorov, Dmitri G.
    Nagata, Takeshi
    Kitaura, Kazuo
    CHEMICAL PHYSICS LETTERS, 2009, 474 (1-3) : 227 - 232
  • [2] Calculations of large molecular systems with the fragment molecular orbital method
    Fedorov, Dmitri G.
    Kitaura, Kazuo
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 239
  • [3] Analytic Gradient for Density Functional Theory Based on the Fragment Molecular Orbital Method
    Brorsen, Kurt R.
    Zahariev, Federico
    Nakata, Hiroya
    Fedorov, Dmitri G.
    Gordon, Mark S.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2014, 10 (12) : 5297 - 5307
  • [4] Long-range corrected fragment molecular orbital density functional tight-binding method for excited states in large molecular systems
    Einsele, Richard
    Hoche, Joscha
    Mitric, Roland
    JOURNAL OF CHEMICAL PHYSICS, 2023, 158 (04):
  • [5] Time-dependent density functional theory based upon the fragment molecular orbital method
    Chiba, Mahito
    Fedorov, Dmitri G.
    Kitaura, Kazuo
    JOURNAL OF CHEMICAL PHYSICS, 2007, 127 (10):
  • [6] Fragment molecular orbital method with density functional theory and DIIS convergence acceleration
    Sugiki, SI
    Kurita, N
    Sengoku, Y
    Sekino, H
    CHEMICAL PHYSICS LETTERS, 2003, 382 (5-6) : 611 - 617
  • [7] The three-body fragment molecular orbital method for accurate calculations of large systems
    Fedorov, Dmitri G.
    Kitaura, Kazuo
    CHEMICAL PHYSICS LETTERS, 2006, 433 (1-3) : 182 - 187
  • [8] Linearity condition for orbital energies in density functional theory (V): Extension to excited state calculations
    Imamura, Yutaka
    Suzuki, Kensei
    Iizuka, Takeshi
    Nakai, Hiromi
    CHEMICAL PHYSICS LETTERS, 2015, 618 : 30 - 36
  • [9] Time-dependent density functional theory with the multilayer fragment molecular orbital method
    Chiba, Mahito
    Fedorov, Dmitri G.
    Kitaura, Kazuo
    CHEMICAL PHYSICS LETTERS, 2007, 444 (4-6) : 346 - 350
  • [10] Fragment-Molecular-Orbital-Method-Based ab Initio NMR Chemical-Shift Calculations for Large Molecular Systems
    Gao, Qi
    Yokojima, Satoshi
    Fedorov, Dmitri G.
    Kitaura, Kazuo
    Sakurai, Minoru
    Nakamura, Shinichiro
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2010, 6 (04) : 1428 - 1444